Assoc. Prof. Dr. Mahmoud Bayat | Artificial intelligence Award | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Bayat | Artificial intelligence Award | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Bayat, Research Institute of Forests and Rangelands, Iran

Mahmoud Bayat is an Assistant Professor at the Research Institute of Forests and Rangelands, part of the Agricultural Research, Education, and Extension Organization (AREEO) in Tehran, Iran. He earned his B.A., M.Sc., and Ph.D. degrees from the University of Tehran, specializing in forestry science. Mahmoud has collaborated with renowned researchers, including Dr. Charles P.-A. Bourque, Dr. Pete Bettinger, Dr. Eric Zenner, Dr. Aaron Weiskittel, Dr. Harold Burkhart, and Dr. Timo Pukkala. His research focuses on forest modeling and inventory, with particular interest in applying artificial intelligence and machine learning techniques in forestry. Currently, he is working on projects related to growth and yield models for uneven-aged and mixed broadleaf forests using neural networks and the monitoring and mapping of tree species richness in northern Iran’s forests through symbolic regression and artificial neural networks. Mahmoud is proficient in statistical tools such as SPSS and MATLAB, and he is eager to share his expertise and discuss potential collaborations. For more information, his profiles can be found on ResearchGate, Google Scholar, and Scopus.

Professional Profile:

SCOPUS

 

Mahmoud Bayat’s Suitability for the Research for Best Researcher Award

Based on the provided details, Mahmoud Bayat demonstrates a strong candidacy for the Research for Best Researcher Award due to his extensive academic and professional contributions. Below is a summary supporting his suitability

Education 🎓

  • Ph.D. in Forestry Science
    University of Tehran, Iran
  • M.Sc. in Forestry Science
    University of Tehran, Iran
  • B.A. in Forestry Science
    University of Tehran, Iran

Work Experience 🏢

  • Assistant Professor
    Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO)
    Tehran, Iran
    Year: [Specify Year] – Present
  • Research Collaborator
    Worked with:

    • Dr. Charles P.-A. Bourque
    • Dr. Pete Bettinger
    • Dr. Eric Zenner
    • Dr. Aaron Weiskittel
    • Dr. Harold Burkhart
    • Dr. Timo Pukkala

Research Interests 🔍

  • Forest modeling and inventory
  • Application of artificial intelligence and machine learning in forestry

Current Projects 📊

  1. Growth and Yield Models for Uneven-Aged and Mixed Broadleaf Forest
    • Method: Neural Network
  2. Monitoring, Mapping, and Modeling Variation in Tree Species Richness
    • Method: Symbolic Regression and Artificial Neural Networks
    • Location: Northern Iran Forests

Publication Top Notes:

Comparison of Random Forest Models, Support Vector Machine and Multivariate Linear Regression for Biodiversity Assessment in the Hyrcanian Forests

Projected biodiversity in the Hyrcanian Mountain Forest of Iran: an investigation based on two climate scenarios

Recreation Potential Assessment at Tamarix Forest Reserves: A Method Based on Multicriteria Evaluation Approach and Landscape Metrics

Comparison between graph theory connectivity indices and landscape connectivity metrics for modeling river water quality in the southern Caspian sea basin

Development of multiclass alternating decision trees based models for landslide susceptibility mapping

Modeling Tree Growth Responses to Climate Change: A Case Study in Natural Deciduous Mountain Forests

 

Ruochen Li | Artificial Intelligence | Best Researcher Award

Ruochen Li | Artificial Intelligence | Best Researcher Award

Dr. Ruochen Li, BOHUA UHD Co., Ltd. , China.

Ruochen Li, PhD candidate at Macau University of Science and Technology, specializes in Artificial Intelligence with a focus on no-reference video quality assessment, cross-modal audio-visual retrieval, and image-based sound source localization. With expertise in cutting-edge AI technologies like PyTorch, TensorFlow, and MindSpore, Li has achieved groundbreaking research in video quality evaluation and audio-visual content correlation, earning recognition in top-tier journals. He has also received a prize in the National Artificial Intelligence Competition for his contributions to ultra-high-definition video processing. 📊📹🔍

Publication Profile

Scopus

Education and Experience

  • 🎓 PhD in Artificial Intelligence (2021-2024), Macau University of Science and Technology.
  • 🎓 Master’s in Control Engineering (2016-2019), Jiangsu University of Science and Technology.
    • Supervisor: Associate Prof. Shuxia Ye.
  • 🎓 Bachelor’s in Control Engineering (2012-2016), Jiangsu University of Science and Technology.
  • 📑 Research Participant: National Ultra-High Definition Video Innovation Center.
  • 📑 Research Contributor: China Science and Technology Information Research Institute.

Suitability For The Award

Dr. Ruochen Li is an accomplished researcher specializing in artificial intelligence, video quality assessment, and audio-visual event retrieval. With a Ph.D. in Artificial Intelligence from Mauca University of Science and Technology and extensive expertise in PyTorch, TensorFlow, and MindSpore, Li has contributed significantly to advancing multimedia technologies. Their innovations include state-of-the-art datasets, algorithms like Reformer, and multimodal fusion techniques with applications in accessibility, entertainment, and surveillance. Recognized through high-impact publications and awards, including third prize in the National Artificial Intelligence Competition, Ruochen Li exemplifies excellence in research and innovation, making them a strong candidate for prestigious honors such as the Best Researcher Award.

Professional Development

Ruochen Li’s professional journey is defined by innovations in AI and deep learning. He developed the UHD-VQ5k dataset and proposed novel algorithms for ultra-high-definition video quality assessment, utilizing advanced models like Resformer. His work in audio-visual content analysis, featured in his doctoral dissertation, emphasizes the integration of audio-visual features using deep neural networks. As a key participant in national projects, he has contributed to cloud-based UHD video platforms and AI policy analysis. His collaborations and publications underscore his commitment to advancing AI research and applications. 📊🤖📈

Research Focus

Ruochen Li’s research revolves around Artificial Intelligence applications in multimedia. His expertise spans no-reference video quality assessment, where he develops datasets and benchmarks for UHD video, to cross-modal audio-visual retrieval, enhancing machine understanding of multimodal content. His work also extends to image-based sound source localization, integrating audio-visual data for precise event detection. Through pioneering algorithms, Li bridges gaps between modalities, advancing the interplay of audio and video content in deep learning applications. His contributions drive progress in multimedia AI. 🎥🔊🧠

Awards and Honors

  • 🏆 Prize Winner: National Artificial Intelligence Competition.
  • 🏅 CET-6 Certificate: Scored 490.
  • 🏅 CET-4 Certificate: Scored 552.

Publication Top Notes

  • 📜 SgLFT: Semantic-guided Late Fusion Transformer for Video Corpus Moment Retrieval – Neurocomputing, 2024. 📚
  • 📜 Ultrahigh-definition Video Quality Assessment: A New Dataset and Benchmark – Neurocomputing, 2024, 📊
  • 📜 TA2V: Text-Audio Guided Video Generation – IEEE Transactions on Multimedia, 2024, 🎥🎶
  • 📜 Cross-Modality Knowledge Calibration Network for Video Corpus Moment Retrieval – IEEE Transactions on Multimedia, 2024,  🌐📑
  • 📜 Maximizing Mutual Information Inside Intra- and Inter-Modality for Audio-Visual Event Retrieval – International Journal of Multimedia Information Retrieval, 2023, 🔗🎧

Mr. Omer Tariq | Artificial Intelligence Award | Best Researcher Award

Mr. Omer Tariq | Artificial Intelligence Award | Best Researcher Award 

Mr. Omer Tariq, Korea Advanced Institute of Science and Technology, KAIST, South Korea

Omer Tariq is a Ph.D. candidate at the Korea Advanced Institute of Science and Technology (KAIST), specializing in efficient and privacy-preserving deep learning for AIoT and autonomous systems. With a strong foundation in digital ASIC design, embedded systems, and hardware design, Omer has over seven years of experience in developing and deploying innovative machine learning solutions using TensorFlow, TensorRT, and PyTorch. His research includes advanced robotics software systems, autonomous navigation, and state-of-the-art motion planning algorithms. He has led teams in high-performance SoC/RTL design and verification at the National Electronics Complex, Pakistan, and contributed to satellite imaging systems at SUPARCO. Omer holds a BSc in Electrical Engineering from the University of Engineering and Technology, Taxila, and has published several papers in prominent journals. His technical skills are complemented by a range of certifications in machine learning, data science, and digital signal processing.

Professional Profile:

Summary of Suitability for Best Researcher Award

Omer Tariq is a Ph.D. candidate specializing in efficient and privacy-preserving deep learning for AIoT and Autonomous Systems. His work is highly relevant to current technological advancements and addresses significant challenges in machine learning, robotics, and autonomous systems. His research includes:

Education

Korea Advanced Institute of Science and Technology (KAIST)
Doctor of Philosophy (Ph.D.) in Computer Science
May 2021 – July 2025

  • Majors: Machine Learning & AI
  • CGPA: 3.74/4.3
  • Coursework: Programming for AI, Introduction to Artificial Intelligence, Design and Analysis of Algorithms, Intelligent Robotics, Human-Computer Interaction, Artificial Intelligence and Machine Learning, Technical Writing for Computer Science, Advanced Machine Learning, IoT Datascience

University of Engineering and Technology (UET), Taxila
Bachelor of Science in Electrical Engineering
Nov 2010 – July 2014

  • CGPA: 3.25/4.0
  • Thesis: Computer Vision-Assisted Object Detection and Control Framework for 3-DoF Robotic Arm
  • Area: Microelectronics, Control Systems, and Advanced Computer Architecture

Work Experience

Department of Industrial & Systems Engineering (ISysE), KAIST
Research Assistant
Nov. 2023 – March 2024

  • Designed and developed the electronics and power management module for the DAIM-Autonomous Mobile Robot, enhancing operational efficiency and reliability.
  • Engineered advanced robotics software systems for autonomous navigation and task execution.
  • Implemented state-of-the-art robot motion planning, mapping, and localization (SLAM) algorithms to improve real-time navigation accuracy.

National Electronics Complex, Pakistan (NECOP)
Engineering Manager & Team Lead
Apr. 2019 – Sep. 2022

  • Led verification and validation of high-performance SoC/RTL designs, ensuring system performance and reliability.
  • Spearheaded RTL development and optimization for high-performance IC designs, including logic synthesis, DFT, scan chain insertion, formal verification, and static timing analysis.
  • Managed the use of Synopsys and Cadence EDA tools for front-end and back-end digital IC design processes.

National Space Agency, Pakistan (SUPARCO)
Assistant Manager
Oct. 2014 – Apr. 2019

  • Designed and developed satellite imaging payload systems for national satellite missions.
  • Engineered high-speed, multi-layer PCB designs and conducted signal/power integrity simulations for satellite systems.
  • Developed embedded systems for the Satellite Ku-Band Positioning Unit, enhancing communication and positioning capabilities.

Publication top Notes:

2D Particle Filter Accelerator for Mobile Robot Indoor Localization and Pose Estimation

TabCLR: Contrastive Learning Representation of Tabular Data Classification for Indoor-Outdoor Detection

Compact Walsh–Hadamard Transform-Driven S-Box Design for ASIC Implementations

DeepIOD: Towards A Context-Aware Indoor–Outdoor Detection Framework Using Smartphone Sensors

 

 

Ms. Hind MEZIANE | Artificial Intelligence | Best Scholar Award

Ms. Hind MEZIANE | Artificial Intelligence | Best Scholar Award 

Ms. Hind MEZIANE, ACSA Lab, Faculty of Sciences, University Mohammed First, Oujda, Morocco

Hind Meziane is a dedicated researcher and Ph.D. candidate in Computer Science at the ACSA Laboratory, Department of Mathematics, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco. Her academic journey began with a Baccalaureate in Science (Science Mathematics Option B) from Mehdi Ben Berka High School in Oujda in 2012. She then pursued higher education at Mohammed Premier University, obtaining a DEUG in Mathematics and Computer Science (2012-2014), a LICENSE in Mathematics and Computer Science (2014-2016), and a Specialized Master’s in Computer Engineering with Honors (2017-2019).

Professional Profile:

Summary of Suitability for Best Scholar Award

Hind Meziane is a highly accomplished researcher whose work primarily focuses on the security of Internet of Things (IoT) systems. She is currently pursuing a Ph.D. in Computer Science at Mohammed Premier University and has an impressive academic background, including a specialized master’s degree in Computer Engineering and a bachelor’s degree in Mathematics and Computer Science. Her research contributions are well-documented through various publications in reputable international journals and conference proceedings.

🎓 Education:

  • 2019-Present: Doctorate (PhD) in Computer Science at Mohammed Premier University, Faculty of Sciences, Oujda.
  • 2017-2019: Specialized Master in Computer Engineering, with Honors, at Mohammed Premier University, Faculty of Sciences, Oujda.
  • 2014-2016: LICENSE in Mathematics and Computer Science from Mohammed Premier University, Faculty of Sciences, Oujda.
  • 2012-2014: DEUG in Mathematics and Computer Science from Mohammed Premier University, Faculty of Sciences, Oujda.
  • 2011-2012: Baccalaureate in Science, Mathematics Option B from Mehdi Ben Berka High School, Oujda.

Publication top Notes:

A survey on performance evaluation of artificial intelligence algorithms for improving IoT security systems

A Comparative Study for Modeling IoT Security Systems

Modeling IoT based Forest Fire Detection System with IoTsec

A Study of Modelling IoT Security Systems with Unified Modelling Language (UML)

Classifying security attacks in iot using ctm method

Internet of Things: Classification of attacks using CTM method

Prof. Changgyun Kim | Artificial Intelligence Award | Best Researcher Award

Prof. Changgyun Kim | Artificial Intelligence Award | Best Researcher Award 

Prof. Changgyun Kim, Department of Artificial Intelligence & Software/Samcheok,South Korea

Changgyun Kim is an esteemed academic and researcher associated with Kangwon National University, Department of Artificial Intelligence & Software, and Dongguk University’s Industrial Engineering department in South Korea. His research expertise spans deep learning, healthcare, and data mining. He has made significant contributions to the field, including developing AI-based systems for detecting betting anomalies in sports, diagnosing tooth-related diseases using panoramic images, and creating models for obesity diagnosis using 3D body information. His work is published in renowned journals such as Scientific Reports, Annals of Applied Sport Science, JMIR Medical Informatics, Sensors, Sustainability, the International Journal of Distributed Sensor Networks, and Applied Sciences. Dr. Kim’s notable projects include establishing IoT-based smart factories for SMEs in Korea and developing web applications for obesity diagnosis using data mining methodologies. His extensive research portfolio underscores his commitment to advancing AI applications in various domains

Professional Profile:

ORCID

 

Education

No specific details about Changgyun Kim’s educational background are provided in the provided information. To give a more comprehensive overview, details such as degrees obtained, institutions attended, and fields of study would be needed.

Work Experience

  1. Dongguk University: Jung-gu, Seoul, KR
    • Department: Industrial Engineering
    • Position: Not specified in the provided information.
  2. Kangwon National University
    • Department: Artificial Intelligence & Software
    • Position: Not specified in the provided information.

Publication top Notes:

 

AI-based betting anomaly detection system to ensure fairness in sports and prevent illegal gambling

Detectability of Sports Betting Anomalies Using Deep Learning-based ResNet: Utilization of K-League Data in South Korea

Tooth-Related Disease Detection System Based on Panoramic Images and Optimization Through Automation: Development Study

Development of an Obesity Information Diagnosis Model Reflecting Body Type Information Using 3D Body Information Values

Development of a Web Application Based on Human Body Obesity Index and Self-Obesity Diagnosis Model Using the Data Mining Methodology

Establishment of an IoT-based smart factory and data analysis model for the quality management of SMEs die-casting companies in Korea