Mr. Mohammed Aljamal | Artificial Intelligence | Best Researcher Award

Mr. Mohammed Aljamal | Artificial Intelligence | Best Researcher Award 

Mr. Mohammed Aljamal, University of Bridgeport, United States

Mohammed Aljamal is a Laboratory Engineer and Ph.D. candidate in Computer Science & Engineering, based in the New York City Metropolitan Area. He holds a Master’s degree in Artificial Intelligence from the University of Bridgeport and is actively engaged in academic and professional communities as the President of the UB Robotics Club and a member of AIAA, UPE, and the Honor Society. With over four years of experience at the University of Bridgeport, he has contributed as a Laboratory Engineer, Graduate Research Assistant, and Teaching Assistant, specializing in laboratory management, hardware and software solutions, and IT infrastructure. His expertise spans project leadership, problem-solving, cross-functional team management, and innovative solution design. Beyond academia, Mohammed has a strong background in consulting, resource allocation, and international collaboration, having successfully led and completed critical projects. Passionate about technology and innovation, he continuously seeks opportunities to develop solutions that enhance user experiences and drive technological advancement.

Professional Profile:

GOOGLE SCHOLAR

Suitability of Mohammed Aljamal for the Best Researcher Award

Mohammed Aljamal is a highly skilled and innovative researcher with a strong background in Artificial Intelligence, Computer Science, and Engineering. His Ph.D. candidacy, extensive teaching experience, and leadership roles at the University of Bridgeport demonstrate his dedication to academic excellence and technological advancements.

Education 🎓

  • Ph.D. Candidate in Computer Science & EngineeringUniversity of Bridgeport (Ongoing)
  • Master’s Degree in Artificial IntelligenceUniversity of Bridgeport
  • Bachelor’s Degree in [Field Not Specified][University Not Specified]

Work Experience 💼

University of Bridgeport (4 years 1 month)

  • Labs Engineer (Feb 2022 – Present) ⚙️

    • Improved and maintained laboratory equipment.
    • Developed detailed hardware and software data for lab management.
    • Conducted inspections and routine maintenance on lab equipment.
    • Implemented new technology solutions and disaster recovery plans.
    • Coordinated IT services to ensure data availability and security.
  • Graduate Research & Teaching Assistant (Jan 2022 – Feb 2022) 📚

    • Assisted in research projects and student instruction.
  • Teaching and Laboratory Assistant (Feb 2021 – Dec 2021) 🏫

    • Assisted undergraduate and graduate students in Intro to Robotics.
    • Managed lab hours, discussions, assignments, and exams.

Achievements & Leadership 🌟

  • President of UB Robotics Club 🤖 – Leading robotics initiatives and student projects.
  • Successfully completed two delayed projects 🎯 – Resolved critical issues and met client satisfaction.
  • Consulted and collaborated with international vendors 🌍 – Gained experience in global tech solutions.
  • Designed and implemented innovative lab solutions 🔧 – Optimized university lab resources.

Awards & Honors 🏆

  • Member of AIAA (American Institute of Aeronautics and Astronautics) 🚀
  • Member of UPE (Upsilon Pi Epsilon – International Honor Society for Computing) 🖥️
  • Honor Society Member 🎖️

Publication Top Notes:

 

 

Dr. Jany Shabu | Artificial Intelligence Awards | Best Researcher Award

Dr. Jany Shabu | Artificial Intelligence Awards | Best Researcher Award 

Dr. Jany Shabu, Sathyabama Institute of Science & Technology, India

Dr. S.L. Jany Shabu is an accomplished Associate Professor in the Department of Computer Science Engineering at Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. With a Ph.D. in Image Fusion, her research focuses on multimodal image fusion using intelligent optimization techniques, particularly in the context of brain tumor detection. Dr. Shabu has a strong academic background, holding both M.Tech and MS degrees in Information Technology, and has published extensively, with 58 papers indexed in Scopus and four in WoS. She has received multiple accolades for her contributions to research and education, including cash awards for publishing in high-impact journals and the prestigious NPTEL Discipline Star Certificate. As an active member of the National Institute for Technical Training and Skill Development, Dr. Shabu is dedicated to advancing the field of computer science through her research, teaching, and professional engagement. Her innovative projects, including a Safety Stick for Elders, and her patents in smart traffic control and gesture-based systems, exemplify her commitment to leveraging technology for societal benefit. She has also authored several books on machine learning, cloud computing, and data analytics, further solidifying her reputation as a thought leader in her field. With a robust online presence, including profiles on ORCID and Scopus, Dr. Shabu continues to contribute to academic excellence and innovation in computer science.

Professional Profile:

SCOPUS

Summary of Suitability for Best Researcher Award:

Dr. S.L. Jany Shabu is a commendable candidate for the Best Researcher Award, recognized for her significant contributions to computer science engineering and her innovative research in image fusion and optimization techniques.

Education 🎓

  • Ph.D. in Image Fusion
    Sathyabama Institute of Science and Technology
    Thesis Title: Multimodal Image Fusion using Intelligent Optimization Techniques with Brain Tumor Detection
  • M.Tech (IT) in Information Technology
    Sathyabama Institute of Science and Technology
    Graduated with First Class
  • M.S. (IT) in Information Technology
    Manonmaniam Sundaranar University
    Graduated with First Class

Work Experience 💼

  • Current Position: Associate Professor, Computer Science Engineering
    Sathyabama Institute of Science and Technology

Achievements 🌟

  • Seed Funding:
    Project Title: Safety Stick for Elders
    Amount: ₹300,000
    Period: Oct 2021 – June 2022
    Role: Co Principal Investigator
  • Patent Holder:
    1. SMART TRAFFIC CONTROL SYSTEM USING IOT BASED MONITORING SYSTEM
      Application No: 201741038384 – Published
    2. GARMENT STEAMER MANAGEMENT SYSTEM
      Application No: 367890-001 – Published
    3. GESTURE BASED ELECTRONIC GADGET OPERATING SYSTEM
      Application No: 202341088351 A – Published
  • Reviewer:
    • Journal of Scientific Research and Reports
    • Journal of Pharmaceutical Research International
    • International Conference on Computational Intelligence, Networks & Security
    • Book Chapter for CRC PRESS Taylor & Francis Group

Awards and Honors 🏆

  • Cash Award for Publishing Paper in High Impact WOS Journal
    Sathyabama Institute of Science and Technology (Teachers Day 2022 & 2024)
  • NPTEL Discipline Star Certificate
  • Disciplinarian Award
    Sathyabama Institute of Science & Technology, Chennai

Publication Top Notes:

DeepExuDetectNet: Diabetic retinopathy diagnosis: Blood vessel segmentation and exudates disease detection in fundus images

A swarm intelligence optimization for lung cancer detection from RNA-seq gene expression data using convolutional neural networks

A novel framework for entertainment robots in personalized elderly care using adaptive emotional resonance technologies

An Improved Adaptive Neuro-fuzzy Inference Framework for Lung Cancer Detection and Prediction on Internet of Medical Things Platform

Rainfall prediction using machine learning techniques

Online product review using sentiment analysis

Akmal Jahan Mohamed Abdul Cader | Artificial Intelligence | Best Researcher Award

Akmal Jahan Mohamed Abdul Cader | Artificial Intelligence | Best Researcher Award

Dr. Akmal Jahan Mohamed Abdul Cader, South Eastern University, Sri Lanka.

Dr. Akmal Jahan Mohamed Abdul Cader is a distinguished academic and researcher currently serving as a Senior Lecturer in Computer Science at the South Eastern University of Sri Lanka. With extensive experience in higher education, he is a Visiting Research Fellow at QUT, Australia. His research interests include artificial intelligence, data science, and document image analysis. Dr. Cader has published numerous high-impact articles and is actively involved in academic development and curriculum design. He is committed to advancing education and research in the field of computer science. 📚💻🌍

Publication Profiles 

Googlescholar

Education and Experience

  • Visiting Research Fellow – QUT Momentum Visiting Fellow, QUT, Australia (2021 – Present) 🎓
  • Senior Lecturer (Computer Science) – South Eastern University of Sri Lanka (2020 – Present) 🏫
  • Sessional Academic – School of Electrical Engineering & Computer Science, QUT (2016 – 2019) 📖
  • Lecturer (Computer Science) – South Eastern University of Sri Lanka (2012 – 2015) 🧑‍🏫
  • Assistant Lecturer – South Eastern University of Sri Lanka (2010 – 2012) 🔍
  • Demonstrator in Computer Science – South Eastern University of Sri Lanka (2009 – 2010) 👨‍🔬

Suitability For The Award

Dr. Mac Akmal Jahan Mohamed Abdul Cader, Senior Lecturer in Computer Science at the South Eastern University of Sri Lanka, is a highly accomplished academic and researcher, making him an exemplary candidate for the Best Researcher Award. With a career spanning over a decade, Dr. Cader has consistently demonstrated leadership in research, teaching, and academic development, particularly in the fields of artificial intelligence, computer science, and digital technologies. His research contributions, coupled with his active involvement in academic service, professional organizations, and international collaborations, solidify his standing as a leading figure in his domain.

Professional Development

Dr. Cader has participated in several professional development programs focused on effective communication, teaching and learning, and project-based learning. He has completed various certifications at QUT, enhancing his skills in pedagogy and curriculum development. His commitment to continuous improvement in education is evident in his active engagement in workshops and training sessions aimed at promoting best practices in teaching. As a Fellow of the Higher Education Academy, he champions high standards in academic instruction and student engagement. 🏅📈📚

Research Focus

Dr. Cader’s research primarily focuses on artificial intelligence, data science, and document image analysis. He explores the synthesis and application of synthetic metals, aiming to develop innovative solutions in electronics and energy storage. His work on TCNQ chemistry has significant implications for biotechnology and medicine, including the construction of electrochemical sensors and drug delivery systems. By synthesizing novel compounds, he contributes to advancements in both theoretical and practical aspects of computer science and materials research. 🔬⚙️🌐

Awards and Honors

  • Senate Honours Award for High Impact Publications – SEUSL (2022 & 2023) 🏆
  • Queensland University of Technology Postgraduate Award (QUTPRA) (2015) 📜
  • Faculty Write Up (FWU) Scholarship – QUT, Australia (2019) 📚
  • Effective Communication in Teaching and Learning – QUT, Australia (2019) 🗣️
  • Foundation of Teaching and Learning – QUT (2018) 🎓

Publication Top Notes 

  • Locating tables in scanned documents for reconstructing and republishing | Cited by: 46 | Year: 2014 📄🔍
  • Plagiarism Detection on Electronic Text based Assignments using Vector Space Model (ICIAfS14) | Cited by: 37 | Year: 2014 📊✏️
  • AntiPlag: Plagiarism Detection on Electronic Submissions of Text Based Assignments | Cited by: 34 | Year: 2014 📄🛡️
  • Plagiarism detection tools and techniques: A comprehensive survey | Cited by: 23 | Year: 2021 🔎📚
  • Fingerprint Systems: Sensors, Image Acquisition, Interoperability and Challenges | Cited by: 11 | Year: 2023 🖐️📷
  • Contactless finger recognition using invariants from higher order spectra of ridge orientation profiles | Cited by: 10 | Year: 2018 ✋📏
  • Accelerating text-based plagiarism detection using GPUs | Cited by: 10 | Year: 2015 ⚡💻
  • Contactless multiple finger segments based identity verification using information fusion from higher order spectral invariants | Cited by: 9 | Year: 2018 🖐️🔗

Masoud DANESHTALAB | deep learning | Best Researcher Award

Prof. Masoud DANESHTALAB | deep learning | Best Researcher Award 

Prof. Masoud DANESHTALAB, Mälardalen University, Sweden.

Masoud Daneshtalab, Ph.D., Docent, Full Professor
Masoud Daneshtalab is a globally recognized scholar and Full Professor at Mälardalen University (MDU), Sweden. With over two decades of academic and professional excellence, he has made significant contributions to computer science and engineering, specializing in dependable systems, AI, and hardware/software co-design. A prolific researcher with an H-index of 35 and over 5,100 citations, Dr. Daneshtalab is included in the prestigious World’s Top 2% Scientists Ranking. He serves as the Scientific Director of Fundamental AI at MDU and collaborates internationally, holding adjunct professorships and contributing to cutting-edge research initiatives.

Professional Profile:

Google Scholar

Suitability of Masoud Daneshtalab for the Best Researcher Award

Dr. Masoud Daneshtalab is a highly suitable candidate for the “Research for Best Researcher Award,” based on his exceptional academic achievements and professional contributions. Here are the key reasons

Education

🎓 Academic Journey

  • Docent (2018): Qualified in Computer Science and Electronics, Mälardalen University, Sweden.
  • Ph.D. (2008–2011): Information and Communication Technology, University of Turku, Finland. Dissertation: Adaptive Implementation of On-Chip Networks under Prof. Hannu Tenhunen.
  • M.Sc. (2004–2006): Computer Engineering, University of Tehran, Iran. Thesis: Low Power Methods in Network-on-Chips under Prof. Ali Afzali-Kusha.
  • B.Sc. (1998–2002): Computer Engineering, Shahid Bahonar University of Kerman, Iran.

Experience

💼 Professional Contributions

  • Scientific Director (2024–Present): Fundamental AI, Mälardalen University, Sweden.
  • Full Professor (2020–Present): Innovation, Design & Engineering, MDU.
  • Adjunct Professor (2019–Present): Computer Systems, Tallinn University of Technology, Estonia.
  • Previous Roles: Associate Professor at MDU (2016–2020), EU Marie Curie Fellow at KTH Royal Institute of Technology (2014–2016), Lecturer at the University of Turku (2011–2014), and Researcher at the University of Tehran (2006–2008).

Research Interests

🔬 Key Areas

  • Optimization and robustness in deep learning models.
  • HW/SW co-design and heterogeneous computing.
  • Dependable systems, memory architectures, and interconnection networks.
  • Cutting-edge projects include sustainable AI, federated learning, and reliable autonomous systems.

Awards

🏆 Recognitions

  • Best Paper Awards: IEEE ECBS (2019), IEEE MCSoC (2018), and multiple HiPEAC Paper Awards (2013–2017).
  • Research Grants: Marie Skłodowska-Curie Fellowship (2014), Nokia Foundation (2009), and others.
  • Top Reviewer: IEEE Transactions on Computers (2013).
  • Fellowships: GETA, Helsinki University of Technology (2008–2011).

Publications

A review on deep learning methods for ECG arrhythmia classification

CITIED: 490

Time-Sensitive Networking in automotive embedded systems: State of the art and research opportunities

CITIED: 147

Routing algorithms in networks-on-chip

CITIED: 136

Smart hill climbing for agile dynamic mapping in many-core systems

CITIED: 125

EDXY–A low cost congestion-aware routing algorithm for network-on-chips

CITIED: 124

Deep Maker: A multi-objective optimization framework for deep neural networks in embedded systems

CITIED: 122

 

Assoc. Prof. Dr. Mahmoud Bayat | Artificial intelligence Award | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Bayat | Artificial intelligence Award | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Bayat, Research Institute of Forests and Rangelands, Iran

Mahmoud Bayat is an Assistant Professor at the Research Institute of Forests and Rangelands, part of the Agricultural Research, Education, and Extension Organization (AREEO) in Tehran, Iran. He earned his B.A., M.Sc., and Ph.D. degrees from the University of Tehran, specializing in forestry science. Mahmoud has collaborated with renowned researchers, including Dr. Charles P.-A. Bourque, Dr. Pete Bettinger, Dr. Eric Zenner, Dr. Aaron Weiskittel, Dr. Harold Burkhart, and Dr. Timo Pukkala. His research focuses on forest modeling and inventory, with particular interest in applying artificial intelligence and machine learning techniques in forestry. Currently, he is working on projects related to growth and yield models for uneven-aged and mixed broadleaf forests using neural networks and the monitoring and mapping of tree species richness in northern Iran’s forests through symbolic regression and artificial neural networks. Mahmoud is proficient in statistical tools such as SPSS and MATLAB, and he is eager to share his expertise and discuss potential collaborations. For more information, his profiles can be found on ResearchGate, Google Scholar, and Scopus.

Professional Profile:

SCOPUS

 

Mahmoud Bayat’s Suitability for the Research for Best Researcher Award

Based on the provided details, Mahmoud Bayat demonstrates a strong candidacy for the Research for Best Researcher Award due to his extensive academic and professional contributions. Below is a summary supporting his suitability

Education 🎓

  • Ph.D. in Forestry Science
    University of Tehran, Iran
  • M.Sc. in Forestry Science
    University of Tehran, Iran
  • B.A. in Forestry Science
    University of Tehran, Iran

Work Experience 🏢

  • Assistant Professor
    Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO)
    Tehran, Iran
    Year: [Specify Year] – Present
  • Research Collaborator
    Worked with:

    • Dr. Charles P.-A. Bourque
    • Dr. Pete Bettinger
    • Dr. Eric Zenner
    • Dr. Aaron Weiskittel
    • Dr. Harold Burkhart
    • Dr. Timo Pukkala

Research Interests 🔍

  • Forest modeling and inventory
  • Application of artificial intelligence and machine learning in forestry

Current Projects 📊

  1. Growth and Yield Models for Uneven-Aged and Mixed Broadleaf Forest
    • Method: Neural Network
  2. Monitoring, Mapping, and Modeling Variation in Tree Species Richness
    • Method: Symbolic Regression and Artificial Neural Networks
    • Location: Northern Iran Forests

Publication Top Notes:

Comparison of Random Forest Models, Support Vector Machine and Multivariate Linear Regression for Biodiversity Assessment in the Hyrcanian Forests

Projected biodiversity in the Hyrcanian Mountain Forest of Iran: an investigation based on two climate scenarios

Recreation Potential Assessment at Tamarix Forest Reserves: A Method Based on Multicriteria Evaluation Approach and Landscape Metrics

Comparison between graph theory connectivity indices and landscape connectivity metrics for modeling river water quality in the southern Caspian sea basin

Development of multiclass alternating decision trees based models for landslide susceptibility mapping

Modeling Tree Growth Responses to Climate Change: A Case Study in Natural Deciduous Mountain Forests

 

Mr. Seyed matin malakouti | Deep learning Awards | Best Researcher Award

Mr. Seyed matin malakouti | Deep learning Awards | Best Researcher Award

Mr. Seyed matin malakouti, University of Rijeka, Croatia

Seyed Matin Malakouti is an accomplished electrical engineer and researcher specializing in control systems engineering and machine learning. He completed his Master of Science in Electrical Engineering from the University of Tabriz, Iran, after earning his Bachelor’s degree from Isfahan University of Technology. His research spans various applications of machine learning, including wind power generation prediction, heart disease classification using ECG data, and solar farm power generation forecasting. Seyed’s work has resulted in several high-impact publications in prestigious journals, with his research on wind energy and machine learning techniques receiving significant citations. He has also been involved in cutting-edge projects such as predicting global temperature change and advancing renewable energy solutions. In recognition of his contributions, Seyed has received multiple awards, including the Best Researcher Award at the International Conference on Cardiology and Cardiovascular Medicine in 2023, and nominations for Best Paper and Best Researcher Awards in other international conferences. Additionally, he actively contributes to the scientific community as a peer reviewer for numerous journals in the fields of artificial intelligence, environmental sciences, and electrical engineering.

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award

Seyed Matin Malakouti is a highly qualified and accomplished researcher in the field of Electrical Engineering, specializing in Control Systems, Machine Learning, and Data Science. His impressive academic background includes a Master’s degree in Electrical Engineering from the University of Tabriz and a Bachelor’s degree from Isfahan University of Technology.

Education & Training 🎓

  • 2020 – 2022: M.Sc. in Electrical Engineering – Control System Engineering, University of Tabriz, Iran
  • 2014 – 2019: B.Sc. in Electrical Engineering, Isfahan University of Technology, Iran

Awards & Honors 🏆

  • 2023: Best Researcher, International Conference on Cardiology and Cardiovascular Medicine
  • 2023: Nominated for Best Paper Award, International Research Awards on Mathematics and Optimization Methods
  • 2024: International Young Scientist Awards, Best Researcher Category

Technical Skills 🛠️

  • Machine Learning 🤖
  • Data Science 📊
  • Programming Languages: MATLAB, Python 💻

Peer Review Activities 🧐

Seyed has reviewed articles for prestigious journals, such as:

  • IEEE Access
  • Artificial Intelligence Review
  • BMC Public Health
  • Environmental Monitoring and Assessment 🌱

Publication top Notes:

Machine learning and transfer learning techniques for accurate brain tumor classification

ML: Early Breast Cancer Diagnosis

Advanced techniques for wind energy production forecasting: Leveraging multi-layer Perceptron + Bayesian optimization, ensemble learning, and CNN-LSTM models

Babysitting hyperparameter optimization and 10-fold-cross-validation to enhance the performance of ML methods in predicting wind speed and energy generation

Discriminate primary gammas (signal) from the images of hadronic showers by cosmic rays in the upper atmosphere (background) with machine learning

Estimating the output power and wind speed with ML methods: A case study in Texas

Prof. Dr. Tamara Gajic | Artificial Intelligence Awards | Top Researcher Award

Prof. Dr. Tamara Gajic | Artificial Intelligence Awards | Top Researcher Award 

Prof. Dr. Tamara Gajic, Geographical Institute “Jovan Cvijic” Serbian Academy of Sciences and Arts, Belgrade, Serbia

Tamara Gajić is a distinguished Senior Research Associate at the Geographical Institute “Jovan Cvijić” of the Serbian Academy of Sciences and Arts (SASA), specializing in social geography. She holds a Ph.D. in Geosciences from the University of Novi Sad and has extensive experience in research and education across various institutions. Her academic career spans several positions, including Senior Researcher at the Institute of Environmental Engineering, People’s Friendship University of Russia (RUDN University), and Associate Professor at Singidunum University in Belgrade. She has also served as a professor and assistant professor at various universities in Serbia, Bosnia, and Herzegovina. Gajić’s research focuses on rural development, tourism management, and sustainable practices in agritourism, gastrotourism, and sport tourism. She has contributed to numerous projects, including the modernization of tourism study programs in Serbia and feasibility studies for spa tourism. Gajić is an active member of various professional organizations, including the Serbian Geographical Society and the Tourist Organization of Serbia, and has mentored numerous graduate and doctoral students. Her expertise in integrating economics, service quality, and human resources in tourism management has earned her recognition as one of the top 10% of distinguished scientists in Serbia in 2024.

Professional Profile:

SCOPUS

ORCID

GOOGLE SCHOLAR

Suitability of Tamara Gajić for the Top Researcher Award

Tamara Gajić is highly qualified for the Top Researcher Award due to her extensive academic and professional achievements in the fields of Geography, Rural Studies, and Tourism Management. Below are the key reasons why she is a suitable candidate for this prestigious award:

Academic Degrees:

🎓 Ph.D. in Geosciences
📅 2010
University of Novi Sad, Faculty of Sciences, Department of Geography, Tourism and Hotel Management, Serbia 🇷🇸

🎓 M.Sc. in Tourism Management
📅 2007
University of Novi Sad, Faculty of Sciences, Department of Geography, Tourism and Hotel Management, Serbia 🇷🇸

🎓 B.Sc. in Tourism Management
📅 2001
University of Novi Sad, Faculty of Sciences, Department of Geography, Tourism and Hotel Management, Serbia 🇷🇸

Research & Teaching Interests:

🌍 Research Areas:

  • Geography 🌍
  • Rural Studies 🌾
  • Tourism Management 🌐
    Focus on Agrotourism, Gastrotourism, and Sport Tourism 🏞️🍴🏃‍♀️
    Intersection of Economics in Tourism, Service Quality, and Human Resources 💼
    Sustainability in Environment and Tourism 🌱

Previous Employment:

  • Associate Professor
    📅 February 2021 – September 2021
    Faculty of Tourism and Hotel Management, Singidunum University, Belgrade, Serbia 🇷🇸
  • Assistant Professor
    📅 October 2018 – February 2022
    University for Business Studies, Banja Luka, Bosnia and Herzegovina 🇧🇦
  • Professor of Vocational Studies
    📅 October 2008 – February 2021
    Novi Sad Business School, Novi Sad, Serbia 🇷🇸

Publication top Notes:

Innovative Approaches in Hotel Management: Integrating Artificial Intelligence (AI) and the Internet of Things (IoT) to Enhance Operational Efficiency and Sustainability

The Contribution of the Farm to Table Concept to the Sustainable Development of Agritourism Homesteads

Fostering Sustainable Urban Tourism in Predominantly Industrial Small-Sized Cities (SSCs)—Focusing on Two Selected Locations

Leveraging digital platforms for responsible sports tourism: Budapest’s role in the 2020 European football championship

Tourists’ Willingness to Adopt AI in Hospitality—Assumption of Sustainability in Developing Countries

The Adoption of Artificial Intelligence in Serbian Hospitality: A Potential Path to Sustainable Practice

Alireza Amiri-Simkooei | Deep learning | Best Researcher Award

Dr. Alireza Amiri-Simkooei | Deep learning | Best Researcher Award

Associate professor at Delft University of Technology, Netherlands

Alireza Amiri-Simkooei is an accomplished Dutch-Iranian geodesist and academic, currently serving as an Associate Professor at Delft University of Technology. With over two decades of experience in geoscience and remote sensing, he specializes in statistical geodesy, optimization, and machine learning. Alireza’s expertise spans various domains, including artificial intelligence applications in geodesy, acoustic remote sensing, and advanced estimation methods. He has contributed significantly to academia through teaching, research, and editorial roles in prominent journals. Alireza holds a Ph.D. from Delft University of Technology, where his thesis focused on least-squares variance component estimation. His dedication to education and research has earned him numerous accolades, making him a leading figure in his field.

Profile:

ORCID Profile

Strengths for the Award:

  1. Impressive Academic Background:
    • Achievements in education, including being ranked first in both his B.Sc. and M.Sc. programs, reflect a strong foundation in geodesy and optimization engineering.
  2. Diverse Research Interests:
    • His research spans multiple domains such as AI, machine learning, acoustic remote sensing, optimization, and time series analysis, showcasing versatility and adaptability in addressing complex problems.
  3. Substantial Publication Record:
    • With numerous articles in high-impact journals, he demonstrates a strong commitment to advancing knowledge in his fields of expertise. His works cover cutting-edge topics such as machine learning applications in geodesy and acoustic sensing.
  4. Recognition and Awards:
    • Multiple awards and honors highlight his contributions and excellence in research and education, including recognition as an outstanding researcher at various institutions.
  5. Leadership and Mentorship:
    • His roles, such as Director of Research Affairs and various editorial positions, illustrate his leadership capabilities and commitment to the academic community.
  6. Significant Project Experience:
    • His involvement in various funded projects showcases his ability to secure grants and lead impactful research initiatives, often incorporating innovative techniques in machine learning and optimization.

Areas for Improvement:

  1. Broader Collaboration:
    • While he has collaborated on several projects, seeking more interdisciplinary collaborations could enhance the applicability and impact of his research.
  2. Public Engagement:
    • Increasing outreach efforts to engage non-academic audiences could improve the societal impact of his research, especially in applied fields like remote sensing and environmental monitoring.
  3. Emerging Trends:
    • Staying updated with the latest trends in AI and remote sensing technologies could enhance his research scope and application relevance. This might involve exploring new methodologies or integrating other emerging technologies.
  4. Diversity in Funding Sources:
    • Diversifying funding sources beyond governmental and institutional grants could help in securing resources for innovative projects and broaden his research agenda.

Education:

Alireza Amiri-Simkooei earned his B.Sc. in Geodetic Engineering from the University of Isfahan in 1994, graduating first in his class. He continued his studies at K. N. Toosi University of Technology, where he completed his M.Sc. in Optimization Engineering in 1998, again ranking first among his peers. He then pursued a Ph.D. at Delft University of Technology, specializing in Statistical Geodesy from 2002 to 2007. His doctoral thesis focused on least-squares variance component estimation and its applications in GPS technology, supervised by Prof. Dr. Peter J.G. Teunissen. Alireza’s educational journey reflects a strong foundation in engineering and mathematical optimization, underpinned by rigorous research methodologies that have shaped his subsequent contributions to the field.

Experience:

Alireza Amiri-Simkooei has an extensive professional background in academia and research, spanning over two decades. He is currently an Associate Professor at Delft University of Technology in the Department of Geoscience and Remote Sensing. Prior to this, he served as an Assistant Professor and researcher at the same institution, where he contributed to various innovative projects. Alireza also held a full professorship at the University of Isfahan, where he was involved in teaching, departmental leadership, and research administration as the Director of Research Affairs. His earlier positions include postdoctoral research and various academic roles at both Delft University and the University of Isfahan. His diverse experience encompasses research in geodesy, optimization, and acoustic remote sensing, making him a prominent figure in his field.

Awards and Honors:

Alireza Amiri-Simkooei has received numerous prestigious awards throughout his academic career. He was recognized as an outstanding student in both his B.Sc. and M.Sc. programs, ranking first in his classes. In 2002, he obtained an overseas Ph.D. scholarship from the Iranian Ministry of Science. His contributions to the field have earned him accolades such as the Outstanding Researcher award at the University of Isfahan, where he was recognized multiple times. Additionally, Alireza has been honored as an Outstanding Reviewer for the Journal of Surveying Engineering. His leadership roles, including being the Director of Research Affairs at the University of Isfahan, further highlight his impact on the academic community. Alireza continues to contribute to the advancement of geoscience through editorial positions and active involvement in research collaborations, solidifying his reputation as a leading researcher in his field.

Research Focus:

Alireza Amiri-Simkooei’s research focuses on the intersection of artificial intelligence and geodesy, particularly in machine learning applications to enhance geospatial analysis and data processing. He explores various methodologies, including least-squares-based deep learning and support vector regression, to optimize geodetic data estimation and enhance accuracy in measurements. Alireza is also deeply engaged in acoustic remote sensing, developing innovative modeling techniques for wind tunnel acoustics and underwater imaging. His work on statistical variance component estimation and advanced estimation methods, such as Kriging and Kalman filtering, has contributed to improving the reliability of geodetic measurements. Additionally, Alireza investigates time series analysis and stochastic modeling, applying these techniques to various domains, including air transport operations and environmental monitoring. His multifaceted research aims to advance methodologies that integrate geospatial data with artificial intelligence, significantly impacting both theoretical and practical applications in geoscience.

Publications Top Notes:

  1. Combinatorial Nonnegative Matrix-Tensor Factorization for Hyperspectral Unmixing Using a General ℓₕ Norm Regularization
  2. Deep Learning in Standard Least-Squares Theory of Linear Models: Perspective, Development, and Vision
  3. Mussel Culture Monitoring with Semi-Supervised Machine Learning on Multibeam Echosounder Data Using Label Spreading
  4. Multivariate Weighted Total Least Squares Based on the Standard Least-Squares Theory
  5. Impact of Climate Change Parameters on Groundwater Level: Implications for Two Subsidence Regions in Iran Using Geodetic Observations and Artificial Neural Networks (ANN)
  6. Optimization of RFM Problem Using Linearly Programmed ℓ₁-Regularization
  7. Multi-GNSS-Weighted Interpolated Tropospheric Delay to Improve Long-Baseline RTK Positioning
  8. Function-Based Troposphere Tomography Technique for Optimal Downscaling of Precipitation
  9. Estimation of Surface Density Changes Using a Mascon Method in GRACE-like Missions
  10. Linking the Morphology and Ecology of Subtidal Soft-Bottom Marine Benthic Habitats: A Novel Multiscale Approach
  11. Modeling and Prediction of Regular Ionospheric Variations and Deterministic Anomalies
  12. Improving Offset Detection Algorithm of GNSS Position Time-Series Using Spline Function Theory
  13. An Automated PCA-Based Approach Towards Optimization of the Rational Function Model
  14. Experimental Design and Stochastic Modeling of Hydrodynamic Wave Propagation Within Cavities for Wind Tunnel Acoustic Measurements
  15. Geodetic Calibration Network for Total Stations and GNSS Receivers in Sub-Kilometer Distances with Sub-Millimeter Precision
  16. Seafloor Characterization Using Multibeam Echosounder Backscatter Data: Methodology and Results in the North Sea
  17. Unified Least-Squares Formulation of a Linear Model with Hard Constraints
  18. On the Application of Monte Carlo Singular Spectrum Analysis to GPS Position Time Series
  19. Robust Particle Swarm Optimization of RFMs for High-Resolution Satellite Images Based on K-Fold Cross-Validation
  20. Seafloor Classification in a Sand Wave Environment on the Dutch Continental Shelf Using Multibeam Echosounder Backscatter Data

Conclusion:

Alireza Amiri-Simkooei is a highly qualified candidate for the Research for Best Researcher Award. His strong academic background, diverse research interests, extensive publication record, and leadership roles in the academic community position him as a leader in his field. By focusing on broader collaborations, increasing public engagement, and adapting to emerging trends, he can further enhance his contributions to research and society. His track record of excellence indicates that he not only meets the criteria for this award but also has the potential to make even greater impacts in the future.

Assoc Prof Dr. Wenlong Hang | Artificial Intelligence Award | Best Researcher Award

Assoc Prof Dr. Wenlong Hang | Artificial Intelligence Award | Best Researcher Award

Assoc Prof Dr. Wenlong Hang, Nanjing Tech University, China

Wenlong Hang holds a Doctor of Engineering degree from Jiangnan University, where he graduated in June 2017, specializing in Light Industry Information Technology. During his doctoral studies, he visited both Hong Kong Polytechnic University and the Shenzhen Institutes of Advanced Technology. Since September 2017, Dr. Hang has been a faculty member at the School of Computer Science and Technology at Nanjing Tech University. His research interests primarily focus on artificial intelligence and machine learning, with a particular emphasis on medical image analysis and EEG signal processing. He has published more than 30 papers in reputable journals and conferences, contributing significantly to semi-supervised learning, federated learning, and EEG classification techniques. His representative works include research on medical image segmentation, reliability-aware semi-supervised frameworks, and domain-generalized EEG classification.

Professional Profile:

Summary of Suitability for Best Researcher Award :

Wenlong Hang is highly suitable for the Best Researcher Award based on his extensive research and contributions in the fields of artificial intelligence, machine learning, and medical image processing. His academic background, with a Doctor of Engineering degree from Jiangnan University, and professional experiences at institutions like Hong Kong Polytechnic University and Shenzhen Institutes of Advanced Technology, demonstrates his deep involvement in advanced technological research.

Education:

  • Doctor of Engineering (Graduated in June 2017)
    • Major: Light Industry Information Technology
    • Institution: Jiangnan University
    • Doctoral Visits: Hong Kong Polytechnic University, Shenzhen Institutes of Advanced Technology

Work Experience:

  • Since September 2017: Faculty Member
    • Position: Professor at the School of Computer Science and Technology
    • Institution: Nanjing Tech University

Research Areas:

  • Artificial Intelligence (AI)
  • Machine Learning (ML)
  • Medical Image Segmentation
  • EEG Classification

Publication top Notes:

CITED: 109
CITED: 109
CITED: 73
CITED: 67
CITED: 34
CITED: 33

 

Prof. Hsin-Yuan Chen | AI Awards | Outstanding Scientist Award

Prof. Hsin-Yuan Chen | AI Awards | Outstanding Scientist Award

Prof. Hsin-Yuan Chen, Zhejiang University, Taiwan

H.Y. J. Chen is an accomplished researcher with expertise spanning multiple fields including bioengineering, materials science, and guidance system technologies. Holding a Web of Science ResearcherID (JSL-7102-2023) , Chen has an impressive H-index of 58, with over 11,000 citations accumulated from works published between January 2000 and March 2024. Some of Chen’s notable contributions include studies on biochar anodes for lithium-ion batteries, computational fluid dynamics (CFD) analysis of cormorant takeoff mechanisms, and innovations in van der Waals semiconductor photodetectors. Chen’s interdisciplinary work also extends into preprints and collaboration on machine learning applications in conformal field theories.

Professional Profile:

Scopus

Suitability Summary for Research for Outstanding Scientist Award

Researcher: H.Y. J. Chen

Summary:

H.Y. J. Chen stands out as a highly suitable candidate for the Research for Outstanding Scientist Award due to his exceptional contributions and interdisciplinary expertise across multiple scientific domains. Chen’s research spans bioengineering, materials science, and guidance system technologies, showcasing a profound impact on these fields.

🎓Education:

H.Y. J. Chen is an accomplished researcher with expertise in bioengineering, materials science, and guidance system technologies. Chen earned both his Master’s and Bachelor’s degrees, as well as a Ph.D., from Zhejiang University, Hangzhou, China.

Publication Top Notes:

  • Protective Effects of an Oligo-Fucoidan-Based Formula Against Osteoarthritis Development via iNOS and COX-2 Suppression Following Monosodium Iodoacetate Injection
    • Citations: 0
  • Hinokitiol Inhibits Breast Cancer Cells In Vitro Stemness-Progression and Self-Renewal with Apoptosis and Autophagy Modulation via the CD44/Nanog/SOX2/Oct4 Pathway
    • Citations: 1
  • Alleviating 3-MCPD-Induced Male Reproductive Toxicity: Mechanistic Insights and Resveratrol Intervention
    • Citations: 1
  • Hinokitiol as a Modulator of TLR4 Signaling and Apoptotic Pathways in Atopic Dermatitis
    • Citations: 1
  • Integrating Explainable Artificial Intelligence and Blockchain to Smart Agriculture: Research Prospects for Decision Making and Improved Security
    • Citations: 7