Ahmet Güneyli | Artificial intelligence Awards | Best Researcher Award

Prof. Dr. Ahmet Güneyli | Artificial intelligence Awards | Best Researcher Award 

Prof. Dr. Ahmet Güneyli, European University of Lefka, Cyprus.

Ahmet GÜNEYLİ is a Professor of Turkish Language Teaching at the European University of Lefke in North Cyprus. With over two decades of academic experience, he has made significant contributions to Turkish language education, educational sciences, and teacher training. His career spans roles from Assistant Professor at Near East University to his current position as Professor. He supervises numerous master’s and Ph.D. theses, fostering research in multilingual education, instructional strategies, and educational management. Prof. GÜNEYLİ is an active participant in academic publishing and conference presentations, establishing himself as a leading figure in his field.

Professional Profile

Scopus

ORCID

Researcher Suitability Summary for Best Researcher Award

Professor Ahmet Güneyli exhibits exceptional academic and research credentials, positioning him as a strong candidate for the Research for Best Researcher Award. His scholarly achievements, significant contributions to Turkish language education, and commitment to mentoring young researchers underscore his suitability for this recognition.

Education 🎓

  • Undergraduate: Bachelor’s in Preschool & Primary School Education, Teachers Training College, Cyprus (2000).
  • Master’s: M.A. in Educational Sciences with a focus on Turkish Language Teaching, Ankara University, Turkey (2003).
  • Ph.D.: Educational Sciences specializing in Turkish Language Teaching, Ankara University, Turkey (2007).

Ahmet’s academic journey reflects his dedication to Turkish language education and instructional methodologies. His rigorous training has equipped him to address complex educational challenges effectively.

Experience 💼

Ahmet began his career as an Assistant Professor at Near East University in 2009, rising to Associate Professor in 2015. By 2021, he achieved full professorship at the European University of Lefke. His leadership includes supervising theses on multilingual education, bilingual instructional methods, and organizational analysis in education. His work combines practical applications with theoretical frameworks, enhancing education quality in Northern Cyprus.

Research Interests 🔬

Prof. GÜNEYLİ focuses on Turkish language education, bilingual instructional methods, and educational program evaluation. His interdisciplinary approach integrates educational sciences with language studies, aiming to advance instructional techniques and organizational efficiency in schools. His research supports inclusive and multilingual education policies.

Awards 🏆

Ahmet has earned numerous awards for his contributions to Turkish language teaching and educational sciences, underscoring his academic and professional excellence. These honors recognize his innovative teaching methods, impactful research, and dedication to advancing education.

Publications Top Notes 📚

Understanding University Students’ Foreign Language Learning Attitudes: An Analysis Based on Stereotypes

Exploring Teacher Awareness of Artificial Intelligence in Education: A Case Study from Northern Cyprus

Turkish Language Teachers’ Perspectives on Listening Skills Education in Turkey and Northern Cyprus

The effectiveness of virtual reality-based technology on foreign language vocabulary teaching to children with attention deficiency hyperactivity disorder

Examining Conjoint Behavioral Consultation to Support 2e-Autism Spectrum Disorder and Gifted Students in Preschool with Academic and Behavior Concerns

 

Akmal Jahan Mohamed Abdul Cader | Artificial Intelligence | Best Researcher Award

Akmal Jahan Mohamed Abdul Cader | Artificial Intelligence | Best Researcher Award

Dr. Akmal Jahan Mohamed Abdul Cader, South Eastern University, Sri Lanka.

Dr. Akmal Jahan Mohamed Abdul Cader is a distinguished academic and researcher currently serving as a Senior Lecturer in Computer Science at the South Eastern University of Sri Lanka. With extensive experience in higher education, he is a Visiting Research Fellow at QUT, Australia. His research interests include artificial intelligence, data science, and document image analysis. Dr. Cader has published numerous high-impact articles and is actively involved in academic development and curriculum design. He is committed to advancing education and research in the field of computer science. 📚💻🌍

Publication Profiles 

Googlescholar

Education and Experience

  • Visiting Research Fellow – QUT Momentum Visiting Fellow, QUT, Australia (2021 – Present) 🎓
  • Senior Lecturer (Computer Science) – South Eastern University of Sri Lanka (2020 – Present) 🏫
  • Sessional Academic – School of Electrical Engineering & Computer Science, QUT (2016 – 2019) 📖
  • Lecturer (Computer Science) – South Eastern University of Sri Lanka (2012 – 2015) 🧑‍🏫
  • Assistant Lecturer – South Eastern University of Sri Lanka (2010 – 2012) 🔍
  • Demonstrator in Computer Science – South Eastern University of Sri Lanka (2009 – 2010) 👨‍🔬

Suitability For The Award

Dr. Mac Akmal Jahan Mohamed Abdul Cader, Senior Lecturer in Computer Science at the South Eastern University of Sri Lanka, is a highly accomplished academic and researcher, making him an exemplary candidate for the Best Researcher Award. With a career spanning over a decade, Dr. Cader has consistently demonstrated leadership in research, teaching, and academic development, particularly in the fields of artificial intelligence, computer science, and digital technologies. His research contributions, coupled with his active involvement in academic service, professional organizations, and international collaborations, solidify his standing as a leading figure in his domain.

Professional Development

Dr. Cader has participated in several professional development programs focused on effective communication, teaching and learning, and project-based learning. He has completed various certifications at QUT, enhancing his skills in pedagogy and curriculum development. His commitment to continuous improvement in education is evident in his active engagement in workshops and training sessions aimed at promoting best practices in teaching. As a Fellow of the Higher Education Academy, he champions high standards in academic instruction and student engagement. 🏅📈📚

Research Focus

Dr. Cader’s research primarily focuses on artificial intelligence, data science, and document image analysis. He explores the synthesis and application of synthetic metals, aiming to develop innovative solutions in electronics and energy storage. His work on TCNQ chemistry has significant implications for biotechnology and medicine, including the construction of electrochemical sensors and drug delivery systems. By synthesizing novel compounds, he contributes to advancements in both theoretical and practical aspects of computer science and materials research. 🔬⚙️🌐

Awards and Honors

  • Senate Honours Award for High Impact Publications – SEUSL (2022 & 2023) 🏆
  • Queensland University of Technology Postgraduate Award (QUTPRA) (2015) 📜
  • Faculty Write Up (FWU) Scholarship – QUT, Australia (2019) 📚
  • Effective Communication in Teaching and Learning – QUT, Australia (2019) 🗣️
  • Foundation of Teaching and Learning – QUT (2018) 🎓

Publication Top Notes 

  • Locating tables in scanned documents for reconstructing and republishing | Cited by: 46 | Year: 2014 📄🔍
  • Plagiarism Detection on Electronic Text based Assignments using Vector Space Model (ICIAfS14) | Cited by: 37 | Year: 2014 📊✏️
  • AntiPlag: Plagiarism Detection on Electronic Submissions of Text Based Assignments | Cited by: 34 | Year: 2014 📄🛡️
  • Plagiarism detection tools and techniques: A comprehensive survey | Cited by: 23 | Year: 2021 🔎📚
  • Fingerprint Systems: Sensors, Image Acquisition, Interoperability and Challenges | Cited by: 11 | Year: 2023 🖐️📷
  • Contactless finger recognition using invariants from higher order spectra of ridge orientation profiles | Cited by: 10 | Year: 2018 ✋📏
  • Accelerating text-based plagiarism detection using GPUs | Cited by: 10 | Year: 2015 ⚡💻
  • Contactless multiple finger segments based identity verification using information fusion from higher order spectral invariants | Cited by: 9 | Year: 2018 🖐️🔗

Ruochen Li | Artificial Intelligence | Best Researcher Award

Ruochen Li | Artificial Intelligence | Best Researcher Award

Dr. Ruochen Li, BOHUA UHD Co., Ltd. , China.

Ruochen Li, PhD candidate at Macau University of Science and Technology, specializes in Artificial Intelligence with a focus on no-reference video quality assessment, cross-modal audio-visual retrieval, and image-based sound source localization. With expertise in cutting-edge AI technologies like PyTorch, TensorFlow, and MindSpore, Li has achieved groundbreaking research in video quality evaluation and audio-visual content correlation, earning recognition in top-tier journals. He has also received a prize in the National Artificial Intelligence Competition for his contributions to ultra-high-definition video processing. 📊📹🔍

Publication Profile

Scopus

Education and Experience

  • 🎓 PhD in Artificial Intelligence (2021-2024), Macau University of Science and Technology.
  • 🎓 Master’s in Control Engineering (2016-2019), Jiangsu University of Science and Technology.
    • Supervisor: Associate Prof. Shuxia Ye.
  • 🎓 Bachelor’s in Control Engineering (2012-2016), Jiangsu University of Science and Technology.
  • 📑 Research Participant: National Ultra-High Definition Video Innovation Center.
  • 📑 Research Contributor: China Science and Technology Information Research Institute.

Suitability For The Award

Dr. Ruochen Li is an accomplished researcher specializing in artificial intelligence, video quality assessment, and audio-visual event retrieval. With a Ph.D. in Artificial Intelligence from Mauca University of Science and Technology and extensive expertise in PyTorch, TensorFlow, and MindSpore, Li has contributed significantly to advancing multimedia technologies. Their innovations include state-of-the-art datasets, algorithms like Reformer, and multimodal fusion techniques with applications in accessibility, entertainment, and surveillance. Recognized through high-impact publications and awards, including third prize in the National Artificial Intelligence Competition, Ruochen Li exemplifies excellence in research and innovation, making them a strong candidate for prestigious honors such as the Best Researcher Award.

Professional Development

Ruochen Li’s professional journey is defined by innovations in AI and deep learning. He developed the UHD-VQ5k dataset and proposed novel algorithms for ultra-high-definition video quality assessment, utilizing advanced models like Resformer. His work in audio-visual content analysis, featured in his doctoral dissertation, emphasizes the integration of audio-visual features using deep neural networks. As a key participant in national projects, he has contributed to cloud-based UHD video platforms and AI policy analysis. His collaborations and publications underscore his commitment to advancing AI research and applications. 📊🤖📈

Research Focus

Ruochen Li’s research revolves around Artificial Intelligence applications in multimedia. His expertise spans no-reference video quality assessment, where he develops datasets and benchmarks for UHD video, to cross-modal audio-visual retrieval, enhancing machine understanding of multimodal content. His work also extends to image-based sound source localization, integrating audio-visual data for precise event detection. Through pioneering algorithms, Li bridges gaps between modalities, advancing the interplay of audio and video content in deep learning applications. His contributions drive progress in multimedia AI. 🎥🔊🧠

Awards and Honors

  • 🏆 Prize Winner: National Artificial Intelligence Competition.
  • 🏅 CET-6 Certificate: Scored 490.
  • 🏅 CET-4 Certificate: Scored 552.

Publication Top Notes

  • 📜 SgLFT: Semantic-guided Late Fusion Transformer for Video Corpus Moment Retrieval – Neurocomputing, 2024. 📚
  • 📜 Ultrahigh-definition Video Quality Assessment: A New Dataset and Benchmark – Neurocomputing, 2024, 📊
  • 📜 TA2V: Text-Audio Guided Video Generation – IEEE Transactions on Multimedia, 2024, 🎥🎶
  • 📜 Cross-Modality Knowledge Calibration Network for Video Corpus Moment Retrieval – IEEE Transactions on Multimedia, 2024,  🌐📑
  • 📜 Maximizing Mutual Information Inside Intra- and Inter-Modality for Audio-Visual Event Retrieval – International Journal of Multimedia Information Retrieval, 2023, 🔗🎧

Assoc Prof Dr. Wenlong Hang | Artificial Intelligence Award | Best Researcher Award

Assoc Prof Dr. Wenlong Hang | Artificial Intelligence Award | Best Researcher Award

Assoc Prof Dr. Wenlong Hang, Nanjing Tech University, China

Wenlong Hang holds a Doctor of Engineering degree from Jiangnan University, where he graduated in June 2017, specializing in Light Industry Information Technology. During his doctoral studies, he visited both Hong Kong Polytechnic University and the Shenzhen Institutes of Advanced Technology. Since September 2017, Dr. Hang has been a faculty member at the School of Computer Science and Technology at Nanjing Tech University. His research interests primarily focus on artificial intelligence and machine learning, with a particular emphasis on medical image analysis and EEG signal processing. He has published more than 30 papers in reputable journals and conferences, contributing significantly to semi-supervised learning, federated learning, and EEG classification techniques. His representative works include research on medical image segmentation, reliability-aware semi-supervised frameworks, and domain-generalized EEG classification.

Professional Profile:

Summary of Suitability for Best Researcher Award :

Wenlong Hang is highly suitable for the Best Researcher Award based on his extensive research and contributions in the fields of artificial intelligence, machine learning, and medical image processing. His academic background, with a Doctor of Engineering degree from Jiangnan University, and professional experiences at institutions like Hong Kong Polytechnic University and Shenzhen Institutes of Advanced Technology, demonstrates his deep involvement in advanced technological research.

Education:

  • Doctor of Engineering (Graduated in June 2017)
    • Major: Light Industry Information Technology
    • Institution: Jiangnan University
    • Doctoral Visits: Hong Kong Polytechnic University, Shenzhen Institutes of Advanced Technology

Work Experience:

  • Since September 2017: Faculty Member
    • Position: Professor at the School of Computer Science and Technology
    • Institution: Nanjing Tech University

Research Areas:

  • Artificial Intelligence (AI)
  • Machine Learning (ML)
  • Medical Image Segmentation
  • EEG Classification

Publication top Notes:

CITED: 109
CITED: 109
CITED: 73
CITED: 67
CITED: 34
CITED: 33

 

Mr. Lianfa Li | Artificial Intelligence Award | Top Researcher Award

Mr. Lianfa Li | Artificial Intelligence Award | Top Researcher Award 

Mr. Lianfa Li, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China 

Dr. Lianfa Li is a distinguished Senior Research Associate and Lead Data Scientist at the University of Southern California’s Department of Population and Public Health Sciences. Since August 2017, he has been at the forefront of innovations in data science and machine learning, with a particular focus on remote sensing and air pollution modeling to study exposure and health effects. Dr. Li’s academic journey began with a Bachelor of Science in Resources, Planning, and Management from Nanjing University in 1998, followed by a Ph.D. in Geographical Information Science from the Institute of Geographical Sciences and Natural Resources Research at the Chinese Academy of Sciences in 2005. His career includes significant roles such as Associate Professor at the Chinese Academy of Sciences, Postdoctoral Scholar and Associate Specialist at the University of California, Irvine, and Research Associate at USC’s Department of Preventive Medicine.

Professional Profile:

 

ORCID

 

Summary of Suitability for the Top Researcher Award

Lianfa Li, PhD, currently a Senior Research Associate and Lead Data Scientist at the University of Southern California’s Department of Population and Public Health Sciences, is an exemplary candidate for the Top Researcher Award. His extensive background in data science and machine learning, particularly in the realm of remote sensing and air pollution exposure, positions him as a leader in his field. Below are the reasons why Dr. Li is suitable for this prestigious award:

EDUCATION 🎓📚

  • PhD in Geographical Information Science (June 2005)
    Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Advisor: Prof. Jinfeng Wang
  • Bachelor of Science in Resources, Planning and Management (Aug 1998)
    Nanjing University, Nanjing, Jiangsu Province, China
    Advisor: Prof. Yunliang Shi

ACADEMIC EMPLOYMENT 🏛️💼

  • Senior Research Associate, Lead Data Scientist (Aug 2017-Present)
    Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
    Leading innovations in data science and machine learning, and the modeling efforts in remote sensing and air pollution (exposure and health effects)
  • Research Associate (Aug 2017-July 2014)
    Department of Preventive Medicine, University of Southern California, Los Angeles, CA
  • Associate Specialist (June 2013-June 2014)
    Program in Public Health, University of California, Irvine, CA

HONORS AND AWARDS 🏆🎖️

  1. 2010.6
    The paper about Bayesian risk modeling (Risk Analysis, 30(7), 1157-1175) selected for a media outreach campaign in 2010 by Society for Risk Analysis
  2. 2007.5
    Chinese Academy of Sciences KC Wong Work Incentive Fund
  3. 2004.3
    The Excellent Presidential Scholarship of Chinese Academy of Sciences, 2004

WORKSHOP AND PRESENTATION 🎤📅

  1. Biweekly workshop: “Air pollution and exposure modeling” (2015-present, University of Southern California, California, USA)
  2. Invited presentation: “GCN-assisted U-Net for segmentation of OCT images” (Bay area data science workshop, Mar. 27, 2021)
  3. Invited presentation: “Enhancing semantic segmentation with contextual information” (Bay area data science workshop, Dec. 07, 2019)

Publication top Notes:

Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias

Multiscale Entropy-Based Surface Complexity Analysis for Land Cover Image Semantic Segmentation

Generating Fine-Scale Aerosol Data through Downscaling with an Artificial Neural Network Enhanced with Transfer Learning

Encoder–Decoder Full Residual Deep Networks for Robust Regression and Spatiotemporal Estimation

Multi-Scale Residual Deep Network for Semantic Segmentation of Buildings with Regularizer of Shape Representation

Optimal Inversion of Conversion Parameters from Satellite AOD to Ground Aerosol Extinction Coefficient Using Automatic Differentiation

Prof. Changgyun Kim | Artificial Intelligence Award | Best Researcher Award

Prof. Changgyun Kim | Artificial Intelligence Award | Best Researcher Award 

Prof. Changgyun Kim, Department of Artificial Intelligence & Software/Samcheok,South Korea

Changgyun Kim is an esteemed academic and researcher associated with Kangwon National University, Department of Artificial Intelligence & Software, and Dongguk University’s Industrial Engineering department in South Korea. His research expertise spans deep learning, healthcare, and data mining. He has made significant contributions to the field, including developing AI-based systems for detecting betting anomalies in sports, diagnosing tooth-related diseases using panoramic images, and creating models for obesity diagnosis using 3D body information. His work is published in renowned journals such as Scientific Reports, Annals of Applied Sport Science, JMIR Medical Informatics, Sensors, Sustainability, the International Journal of Distributed Sensor Networks, and Applied Sciences. Dr. Kim’s notable projects include establishing IoT-based smart factories for SMEs in Korea and developing web applications for obesity diagnosis using data mining methodologies. His extensive research portfolio underscores his commitment to advancing AI applications in various domains

Professional Profile:

ORCID

 

Education

No specific details about Changgyun Kim’s educational background are provided in the provided information. To give a more comprehensive overview, details such as degrees obtained, institutions attended, and fields of study would be needed.

Work Experience

  1. Dongguk University: Jung-gu, Seoul, KR
    • Department: Industrial Engineering
    • Position: Not specified in the provided information.
  2. Kangwon National University
    • Department: Artificial Intelligence & Software
    • Position: Not specified in the provided information.

Publication top Notes:

 

AI-based betting anomaly detection system to ensure fairness in sports and prevent illegal gambling

Detectability of Sports Betting Anomalies Using Deep Learning-based ResNet: Utilization of K-League Data in South Korea

Tooth-Related Disease Detection System Based on Panoramic Images and Optimization Through Automation: Development Study

Development of an Obesity Information Diagnosis Model Reflecting Body Type Information Using 3D Body Information Values

Development of a Web Application Based on Human Body Obesity Index and Self-Obesity Diagnosis Model Using the Data Mining Methodology

Establishment of an IoT-based smart factory and data analysis model for the quality management of SMEs die-casting companies in Korea