Dr. Mahboob Syed, Osmania University, India
Syed Mahboob is a distinguished physicist with a robust background in materials science. Born on July 25, 1978, in India, he holds a Ph.D. from Osmania University, where he specialized in relaxor ferroelectric compounds. With over 64 published research papers, he has made significant contributions to the field, particularly in dielectric properties and impedance studies. His postdoctoral research in Taiwan and Japan has furthered his expertise in semiconductor integration and materials characterization. Syed is multilingual, fluent in English, Hindi, Telugu, and Urdu, and has collaborated with various national and international institutions, enriching the global scientific community.
Professional Profile
google scholar
Summary of Suitability for Best Researcher Award:
Dr. Syed Mahboob is highly suitable for the Best Researcher Award due to his extensive academic qualifications, research experience, and impressive publication record. He holds a Ph.D. in Physics, awarded in 2006 by Osmania University, with a specialization in computational physics. His strong foundation in both theoretical and experimental physics has allowed him to contribute significantly to the fields of ferroelectrics, semiconductor integration, and dielectric materials. His research work has spanned prestigious institutions globally, including postdoctoral positions at National Taiwan University of Science and Technology and Hiroshima University, Japan. Throughout his research career, Dr. Mahboob has demonstrated expertise in advanced experimental techniques, including impedance spectroscopy, scanning electron microscopy, atomic force microscopy, and ferroelectric testing systems, which are critical in material science and sensor development.
Education
Syed Mahboob completed his Ph.D. in Physics at Osmania University, Hyderabad, in August 2006, focusing on relaxor ferroelectric materials under Prof. G. S. Kumar. His academic journey began with an M.Sc. in Physics with a specialization in Computational Physics, graduating with distinction in 2000. Prior to that, he earned a B.Sc. in Mathematics, Physics, and Chemistry, achieving first division honors. His educational foundation has been instrumental in his extensive research career, enabling him to explore complex scientific phenomena and contribute to advancements in material sciences.
Experience
With a rich research experience spanning over two decades, Syed Mahboob has worked on multiple high-profile projects. He served as a Junior and Senior Research Fellow on projects funded by DST and DRDO, focusing on ferroelectric materials. His postdoctoral roles at National Taiwan University and Hiroshima University allowed him to delve into advanced ceramics and semiconductor research. Since 2009, he has dedicated himself to independent research, producing numerous publications that highlight his expertise in experimental techniques and materials characterization, including dielectric and impedance measurements.
Awards and Honors
Syed Mahboob has received recognition for his contributions to the field of physics, particularly in the study of relaxor ferroelectrics. His Ph.D. research earned accolades for its innovative approach to material synthesis and characterization. His published papers have garnered citations and respect within the scientific community, further validating his expertise. He has been invited to speak at several international conferences, showcasing his research and insights into material properties. Syed continues to be a valuable asset to academic and research institutions, promoting advancements in physics.
Research Focus
Syed Mahboob’s research primarily centers on relaxor ferroelectric materials and their applications in modern technology. His work investigates the dielectric properties and impedance behavior of various ceramic compounds, with a keen interest in lead-free materials. He employs advanced experimental techniques, including plasma-enhanced chemical vapor deposition and scanning electron microscopy, to study material characteristics at the microstructural level. His ongoing research aims to contribute to sustainable technologies and the development of new materials that can enhance electronic devices’ efficiency and performance.
Publication Top Notes
Impedance and ac conductivity studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic prepared through conventional and microwave sintering route
Electrical conduction in (Na0.125Bi0.125Ba0.65Ca0.1)(Nd0.065Ti0.87Nb0.065)O3 ceramic
Dielectric behaviour of microwave sintered rare-earth doped BaTiO3 ceramics
Impedance spectroscopy and conductivity studies on B site modified (Na0.5Bi0.5)(NdxTi1−2xNbx)O3 ceramics
Dielectric Properties of BaTiO3 Based Lead Free Relaxor Prepared Through Conventional and Microwave Sintering