Mr. Seyed matin malakouti | Deep learning Awards | Best Researcher Award

Mr. Seyed matin malakouti | Deep learning Awards | Best Researcher Award

Mr. Seyed matin malakouti, University of Rijeka, Croatia

Seyed Matin Malakouti is an accomplished electrical engineer and researcher specializing in control systems engineering and machine learning. He completed his Master of Science in Electrical Engineering from the University of Tabriz, Iran, after earning his Bachelor’s degree from Isfahan University of Technology. His research spans various applications of machine learning, including wind power generation prediction, heart disease classification using ECG data, and solar farm power generation forecasting. Seyed’s work has resulted in several high-impact publications in prestigious journals, with his research on wind energy and machine learning techniques receiving significant citations. He has also been involved in cutting-edge projects such as predicting global temperature change and advancing renewable energy solutions. In recognition of his contributions, Seyed has received multiple awards, including the Best Researcher Award at the International Conference on Cardiology and Cardiovascular Medicine in 2023, and nominations for Best Paper and Best Researcher Awards in other international conferences. Additionally, he actively contributes to the scientific community as a peer reviewer for numerous journals in the fields of artificial intelligence, environmental sciences, and electrical engineering.

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award

Seyed Matin Malakouti is a highly qualified and accomplished researcher in the field of Electrical Engineering, specializing in Control Systems, Machine Learning, and Data Science. His impressive academic background includes a Master’s degree in Electrical Engineering from the University of Tabriz and a Bachelor’s degree from Isfahan University of Technology.

Education & Training 🎓

  • 2020 – 2022: M.Sc. in Electrical Engineering – Control System Engineering, University of Tabriz, Iran
  • 2014 – 2019: B.Sc. in Electrical Engineering, Isfahan University of Technology, Iran

Awards & Honors 🏆

  • 2023: Best Researcher, International Conference on Cardiology and Cardiovascular Medicine
  • 2023: Nominated for Best Paper Award, International Research Awards on Mathematics and Optimization Methods
  • 2024: International Young Scientist Awards, Best Researcher Category

Technical Skills 🛠️

  • Machine Learning 🤖
  • Data Science 📊
  • Programming Languages: MATLAB, Python 💻

Peer Review Activities 🧐

Seyed has reviewed articles for prestigious journals, such as:

  • IEEE Access
  • Artificial Intelligence Review
  • BMC Public Health
  • Environmental Monitoring and Assessment 🌱

Publication top Notes:

Machine learning and transfer learning techniques for accurate brain tumor classification

ML: Early Breast Cancer Diagnosis

Advanced techniques for wind energy production forecasting: Leveraging multi-layer Perceptron + Bayesian optimization, ensemble learning, and CNN-LSTM models

Babysitting hyperparameter optimization and 10-fold-cross-validation to enhance the performance of ML methods in predicting wind speed and energy generation

Discriminate primary gammas (signal) from the images of hadronic showers by cosmic rays in the upper atmosphere (background) with machine learning

Estimating the output power and wind speed with ML methods: A case study in Texas

Ms. Rachel Stephen Mollel | Machine Learning Awards | Best Scholar Award

Ms. Rachel Stephen Mollel | Machine Learning Awards | Best Scholar Award

Ms. Rachel Stephen Mollel, University of Strathclyde, United Kingdom

Rachel Stephen Mollel is a Ph.D. student in Electrical and Electronic Engineering at the University of Strathclyde, UK. Her research focuses on machine learning, explainable AI, energy demand-side management, smart metering, and non-intrusive load monitoring (NILM). She holds a Master of Engineering from Arkansas Tech University, USA, and a Bachelor’s degree in Telecommunication Engineering from Visvesvaraya Technological University, India. Rachel has contributed significantly to the energy sector, exploring the role of smart meters in reducing energy costs and enhancing communication between energy providers and consumers. Her recent work, which investigates the potential of NILM to reveal hidden demand flexibility in residential energy consumption, has been published in various peer-reviewed journals and conferences. Additionally, she is actively involved in improving the interpretability of NILM models to enhance algorithm performance. Her contributions have been recognized with a Commonwealth Scholarship in 2020.

Professional Profile:

ORCID

Summary of Suitability for the Best Scholar Award:

Rachel Stephen Mollel is a highly suitable candidate for the Best Research Scholar Award based on her significant contributions to the fields of machine learning, explainable AI, and energy demand-side management. As a PhD student at the University of Strathclyde, her research aims to address critical energy issues through innovative approaches like Non-Intrusive Load Monitoring (NILM), which helps uncover hidden demand flexibility in residential energy consumption.

Education:

  • 2021 – Present: PhD in Electrical and Electronic Engineering, University of Strathclyde, UK
  • 2010 – 2012: Master of Engineering, Arkansas Tech University, USA (GPA: 3.75/4.0)
  • 2006 – 2010: Bachelor’s degree in Telecommunication Engineering, Visvesvaraya Technological University, India (First Class)

Work Experience:

  • 2011 – 2012: Graduate Assistant, Arkansas Tech University, USA
    Assisted in the Digital Logic and Robotics Course & Lab; delivered tutorials, graded lab reports and exams, and supported the development of course materials under faculty supervision.
  • 2014 – 2020: Assistant Lecturer, University of Dar es Salaam, Tanzania
    Delivered lectures, prepared and graded exams in Control Systems Engineering and Fundamentals of Electrical Engineering. Supervised undergraduate student projects, practical training, and fieldwork. Managed various administrative duties, such as student registration and coordination of departmental examinations.

Publication top Notes:

Explainability-Informed Feature Selection and Performance Prediction for Nonintrusive Load Monitoring

Using explainability tools to inform non-intrusive load monitoring algorithm performance

Using explainability tools to inform NILM algorithm performance