Dr. Arif UR Rehman | Remote Sensing Awards | Best Researcher Award

Dr. Arif UR Rehman | Remote Sensing Awards | Best Researcher Award

Dr. Arif UR Rehman, Aerospace Information Research Institute, CAS, Pakistan

Arif UR Rehman, is a dedicated researcher specializing in Remote Sensing, GIS, and Forestry. He is currently a Research Assistant at the Aerospace Information Research Institute, Chinese Academy of Sciences, in Beijing, China, where he focuses on spatio-temporal remote sensing data acquisition, processing, and developing machine learning-based tools for vegetation mapping. Previously, he worked as a Remote Sensing Analyst at CABI International under an ADB project, contributing to food security by enhancing crop classification techniques. Arif holds a Master’s degree in Forestry from Beijing Forestry University, an MPhil in Remote Sensing and GIS from the University of the Punjab, an MSc in GIS, a PGD in Remote Sensing & GIS, and an MSc in Electronics from the University of Peshawar. His academic research spans diverse topics, including forest classification, afforestation impact assessment, and land surface temperature analysis. With a strong background in scientific publications and GIS-based spatial analysis, he continues to contribute to advancements in remote sensing and environmental monitoring.

Professional Profile:

SCOPUS

Suitability for the Best Researcher Award

Based on the provided information, Arif UR Rehman has a strong academic and research background in Remote Sensing, GIS, and Machine Learning Applications in Forestry and Agriculture. His qualifications and achievements make him a potential candidate for the Best Researcher Award, but there are some aspects to consider:

🎓 Education

📍 Master in Forestry (Professional Degree) (2019 – 2021)

  • Institution: Beijing Forestry University, China 🇨🇳
  • Field: Forest Management
  • Final Grade: A+
  • Thesis: Feasibility of combining Landsat-8 data with ancillary variables for forest types and land cover classification in mountainous terrains of northern Pakistan

📍 Master of Philosophy (MPhil) in Remote Sensing and GIS (2017 – 2019)

  • Institution: PUCIT, University of the Punjab, Pakistan 🇵🇰
  • Field: Remote Sensing & GIS
  • Final Grade: 72.8%
  • Thesis: Remote Sensing & GIS application for monitoring and evaluating afforestation impact – A case study of the Billion Tree Tsunami Project in Peshawar, Pakistan 🌳

📍 Master of Science (MSc) in Geographic Information System (GIS) (2015 – 2017)

  • Institution: PUCIT, University of the Punjab, Pakistan 🇵🇰
  • Field: GIS
  • Final Grade: 73.2%
  • Thesis: Analyzing the impacts of deforestation on Land Surface Temperature in Northern Pakistan 🌍🌡️

📍 Post Graduate Diploma (PGD) in Remote Sensing & GIS (2014 – 2015)

  • Institution: NCE in Geology, University of Peshawar, Pakistan 🇵🇰
  • Field: GIS & Remote Sensing
  • Final Grade: 73%
  • Thesis: Spatial-Temporal assessment of Land-Use and Land-Cover changes in Lahore 🏙️

📍 Master of Science (MSc) in Electronics (2013 – 2015)

  • Institution: University of Peshawar, Pakistan 🇵🇰
  • Field: Electronics
  • Final Grade: 64%
  • Thesis: Developing Hardware & Android software for Outdoor Advertisement Display 📱💡

🏢 Work Experience

🔹 Research Assistant (Feb 2023 – Aug 2024)

  • Institution: Aerospace Information Research Institute, Chinese Academy of Sciences 🇨🇳
  • Location: Beijing, China
  • Key Responsibilities:
    • Spatio-Temporal Remote Sensing data acquisition & processing 🛰️
    • Developing Machine Learning-based tools for vegetation mapping 🌿🤖
    • Scientific Publications 📚

🔹 Remote Sensing Analyst (Jun 2022 – Dec 2022)

  • Organization: CABI International; ADB Project: Strengthening Food Security 🇵🇰
  • Location: National Agricultural Research Centre (NARC), Islamabad
  • Key Responsibilities:
    • Capacity development of the Crop Reporting Service Department 🌾
    • Google Earth Engine for Crop Classification 🛰️
    • Seasonal Crop Classification Maps 📊

🏆 Achievements & Contributions

✔ Published multiple scientific papers in Remote Sensing, GIS, and Forestry journals 📄🔬
✔ Expertise in Google Earth Engine, Machine Learning, GIS & Remote Sensing, and Crop Mapping 🌍🌾
✔ Significant contributions to afforestation projects (Billion Tree Tsunami) 🌳✅
✔ Developed ML-based tools for vegetation mapping and land cover classification 🤖🌎

🎖 Awards & Honors

🏅 A+ Grade in Master’s at Beijing Forestry University (Highest distinction)
🏅 Recognized for contributions to afforestation monitoring in Pakistan 🌲
🏅 Key researcher in major GIS & Remote Sensing projects 📊

Publication Top Notes:

Removal of environmental influences for estimating soil texture fractions based on ZY1 satellite hyperspectral images

Multi-Temporal Sentinel-1 and Sentinel-2 Data for Orchards Discrimination in Khairpur District, Pakistan Using Spectral Separability Analysis and Machine Learning Classification

Estimation of above-ground biomass in dry temperate forests using Sentinel-2 data and random forest: a case study of the Swat area of Pakistan

The role of random forest and Markov chain models in understanding metropolitan urban growth trajectory

Large Scale Fish Images Classification and Localization using Transfer Learning and Localization Aware CNN Architecture

Combining Landsat-8 spectral bands with ancillary variables for land cover classification in mountainous terrains of northern Pakistan

Comparing different space-borne sensors and methods for the retrieval of land surface temperature

 

Mr. Xiaowo Xu | Remote Sensing award | Best Researcher Award

Mr. Xiaowo Xu | Remote Sensing award | Best Researcher Award 

Mr. Xiaowo Xu, University of Electronic Science and Technology of China 

Xiaowo Xu is a Ph.D. candidate in Information and Communication Engineering at the University of Electronic Science and Technology of China (UESTC), where he has been honing his research skills since September 2022. His academic journey began with a Bachelor of Engineering in Electronic Information Engineering from Sichuan University, followed by a Master of Engineering in the same field at UESTC. His research interests focus on deep learning applications, particularly in object categorization, object detection, instance segmentation, and moving object tracking. Currently, he is dedicated to the intelligent interpretation of synthetic aperture radar (SAR) images. Xiaowo has received several prestigious awards, including the 1st Scholarship for Doctoral Candidates and the Special Scholarship for Doctoral Candidates from UESTC, along with an “Honor Academic” Award and the Outstanding Graduate Student Award for the 2022-2023 academic year.

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award

Xiaowo Xu’s research focus on deep learning applications, particularly in object detection, segmentation, and synthetic aperture radar (SAR) image interpretation, positions him well for the Best Researcher Award. His expertise aligns with cutting-edge areas like object categorization and moving object tracking, essential topics in remote sensing and computer vision, which are currently high-impact fields in academia and industry.

Education:

  • Sep. 2022 – Present: Ph.D. candidate in Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC).
  • Sep. 2020 – Sep. 2022: Master of Engineering in Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC).
  • Sep. 2016 – Jun. 2020: Bachelor of Engineering in Electronic Information Engineering, Sichuan University (SCU).

Work and Research Experience:

  • Ph.D. Research (2022 – Present): Xiaowo Xu is currently pursuing a Ph.D. in Information and Communication Engineering at UESTC, focusing on deep learning applications in synthetic aperture radar (SAR) image intelligent interpretation. His research areas encompass object categorization, detection, instance segmentation, and moving object tracking using deep learning techniques.
  • Master’s Research (2020 – 2022): During his master’s studies at UESTC, he deepened his expertise in information and communication engineering, developing skills in Python, MATLAB, and deep learning frameworks like PyTorch and TensorFlow.
  • Academic Communication and Conferences (2022 – Present): Xiaowo Xu has presented his research through posters at prestigious IEEE conferences, including the International Geoscience and Remote Sensing Symposium and the Radar Conference. His work has been showcased internationally, including in the USA, Malaysia, and China.

Publication top Notes:

A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception

A Group-Wise Feature Enhancement-and-Fusion Network with Dual-Polarization Feature Enrichment for SAR Ship Detection

RBFA-Net: A Rotated Balanced Feature-Aligned Network for Rotated SAR Ship Detection and Classification

A Sparse-Model-Driven Network for Efficient and High-Accuracy InSAR Phase Filtering

Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images