Masoud DANESHTALAB | deep learning | Best Researcher Award

Prof. Masoud DANESHTALAB | deep learning | Best Researcher Awardย 

Prof. Masoud DANESHTALAB,ย Mรคlardalen University, Sweden.

Masoud Daneshtalab, Ph.D., Docent, Full Professor
Masoud Daneshtalab is a globally recognized scholar and Full Professor at Mรคlardalen University (MDU), Sweden. With over two decades of academic and professional excellence, he has made significant contributions to computer science and engineering, specializing in dependable systems, AI, and hardware/software co-design. A prolific researcher with an H-index of 35 and over 5,100 citations, Dr. Daneshtalab is included in the prestigious Worldโ€™s Top 2% Scientists Ranking. He serves as the Scientific Director of Fundamental AI at MDU and collaborates internationally, holding adjunct professorships and contributing to cutting-edge research initiatives.

Professional Profile:

Google Scholar

Suitability of Masoud Daneshtalab for the Best Researcher Award

Dr. Masoud Daneshtalab is a highly suitable candidate for the “Research for Best Researcher Award,” based on his exceptional academic achievements and professional contributions. Here are the key reasons

Education

๐ŸŽ“ Academic Journey

  • Docent (2018): Qualified in Computer Science and Electronics, Mรคlardalen University, Sweden.
  • Ph.D. (2008โ€“2011): Information and Communication Technology, University of Turku, Finland. Dissertation: Adaptive Implementation of On-Chip Networks under Prof. Hannu Tenhunen.
  • M.Sc. (2004โ€“2006): Computer Engineering, University of Tehran, Iran. Thesis: Low Power Methods in Network-on-Chips under Prof. Ali Afzali-Kusha.
  • B.Sc. (1998โ€“2002): Computer Engineering, Shahid Bahonar University of Kerman, Iran.

Experience

๐Ÿ’ผ Professional Contributions

  • Scientific Director (2024โ€“Present): Fundamental AI, Mรคlardalen University, Sweden.
  • Full Professor (2020โ€“Present): Innovation, Design & Engineering, MDU.
  • Adjunct Professor (2019โ€“Present): Computer Systems, Tallinn University of Technology, Estonia.
  • Previous Roles: Associate Professor at MDU (2016โ€“2020), EU Marie Curie Fellow at KTH Royal Institute of Technology (2014โ€“2016), Lecturer at the University of Turku (2011โ€“2014), and Researcher at the University of Tehran (2006โ€“2008).

Research Interests

๐Ÿ”ฌ Key Areas

  • Optimization and robustness in deep learning models.
  • HW/SW co-design and heterogeneous computing.
  • Dependable systems, memory architectures, and interconnection networks.
  • Cutting-edge projects include sustainable AI, federated learning, and reliable autonomous systems.

Awards

๐Ÿ† Recognitions

  • Best Paper Awards: IEEE ECBS (2019), IEEE MCSoC (2018), and multiple HiPEAC Paper Awards (2013โ€“2017).
  • Research Grants: Marie Skล‚odowska-Curie Fellowship (2014), Nokia Foundation (2009), and others.
  • Top Reviewer: IEEE Transactions on Computers (2013).
  • Fellowships: GETA, Helsinki University of Technology (2008โ€“2011).

Publications

A review on deep learning methods for ECG arrhythmia classification

CITIED: 490

Time-Sensitive Networking in automotive embedded systems: State of the art and research opportunities

CITIED: 147

Routing algorithms in networks-on-chip

CITIED: 136

Smart hill climbing for agile dynamic mapping in many-core systems

CITIED: 125

EDXYโ€“A low cost congestion-aware routing algorithm for network-on-chips

CITIED: 124

Deep Maker: A multi-objective optimization framework for deep neural networks in embedded systems

CITIED: 122

 

Mr. Seyed matin malakouti | Deep learning Awards | Best Researcher Award

Mr. Seyed matin malakouti | Deep learning Awards | Best Researcher Award

Mr. Seyed matin malakouti, University of Rijeka, Croatia

Seyed Matin Malakouti is an accomplished electrical engineer and researcher specializing in control systems engineering and machine learning. He completed his Master of Science in Electrical Engineering from the University of Tabriz, Iran, after earning his Bachelor’s degree from Isfahan University of Technology. His research spans various applications of machine learning, including wind power generation prediction, heart disease classification using ECG data, and solar farm power generation forecasting. Seyed’s work has resulted in several high-impact publications in prestigious journals, with his research on wind energy and machine learning techniques receiving significant citations. He has also been involved in cutting-edge projects such as predicting global temperature change and advancing renewable energy solutions. In recognition of his contributions, Seyed has received multiple awards, including the Best Researcher Award at the International Conference on Cardiology and Cardiovascular Medicine in 2023, and nominations for Best Paper and Best Researcher Awards in other international conferences. Additionally, he actively contributes to the scientific community as a peer reviewer for numerous journals in the fields of artificial intelligence, environmental sciences, and electrical engineering.

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award

Seyed Matin Malakouti is a highly qualified and accomplished researcher in the field of Electrical Engineering, specializing in Control Systems, Machine Learning, and Data Science. His impressive academic background includes a Masterโ€™s degree in Electrical Engineering from the University of Tabriz and a Bachelor’s degree from Isfahan University of Technology.

Education & Training ๐ŸŽ“

  • 2020 โ€“ 2022: M.Sc. in Electrical Engineering – Control System Engineering, University of Tabriz, Iran
  • 2014 โ€“ 2019: B.Sc. in Electrical Engineering, Isfahan University of Technology, Iran

Awards & Honors ๐Ÿ†

  • 2023: Best Researcher, International Conference on Cardiology and Cardiovascular Medicine
  • 2023: Nominated for Best Paper Award, International Research Awards on Mathematics and Optimization Methods
  • 2024: International Young Scientist Awards, Best Researcher Category

Technical Skills ๐Ÿ› ๏ธ

  • Machine Learning ๐Ÿค–
  • Data Science ๐Ÿ“Š
  • Programming Languages: MATLAB, Python ๐Ÿ’ป

Peer Review Activities ๐Ÿง

Seyed has reviewed articles for prestigious journals, such as:

  • IEEE Access
  • Artificial Intelligence Review
  • BMC Public Health
  • Environmental Monitoring and Assessment ๐ŸŒฑ

Publication top Notes:

Machine learning and transfer learning techniques for accurate brain tumor classification

ML: Early Breast Cancer Diagnosis

Advanced techniques for wind energy production forecasting: Leveraging multi-layer Perceptron + Bayesian optimization, ensemble learning, and CNN-LSTM models

Babysitting hyperparameter optimization and 10-fold-cross-validation to enhance the performance of ML methods in predicting wind speed and energy generation

Discriminate primary gammas (signal) from the images of hadronic showers by cosmic rays in the upper atmosphere (background) with machine learning

Estimating the output power and wind speed with ML methods: A case study in Texas