Mr. Lianfa Li | Artificial Intelligence Award | Top Researcher Award

Mr. Lianfa Li | Artificial Intelligence Award | Top Researcher Award 

Mr. Lianfa Li, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China 

Dr. Lianfa Li is a distinguished Senior Research Associate and Lead Data Scientist at the University of Southern California’s Department of Population and Public Health Sciences. Since August 2017, he has been at the forefront of innovations in data science and machine learning, with a particular focus on remote sensing and air pollution modeling to study exposure and health effects. Dr. Li’s academic journey began with a Bachelor of Science in Resources, Planning, and Management from Nanjing University in 1998, followed by a Ph.D. in Geographical Information Science from the Institute of Geographical Sciences and Natural Resources Research at the Chinese Academy of Sciences in 2005. His career includes significant roles such as Associate Professor at the Chinese Academy of Sciences, Postdoctoral Scholar and Associate Specialist at the University of California, Irvine, and Research Associate at USC’s Department of Preventive Medicine.

Professional Profile:

 

ORCID

 

Summary of Suitability for the Top Researcher Award

Lianfa Li, PhD, currently a Senior Research Associate and Lead Data Scientist at the University of Southern California’s Department of Population and Public Health Sciences, is an exemplary candidate for the Top Researcher Award. His extensive background in data science and machine learning, particularly in the realm of remote sensing and air pollution exposure, positions him as a leader in his field. Below are the reasons why Dr. Li is suitable for this prestigious award:

EDUCATION 🎓📚

  • PhD in Geographical Information Science (June 2005)
    Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
    Advisor: Prof. Jinfeng Wang
  • Bachelor of Science in Resources, Planning and Management (Aug 1998)
    Nanjing University, Nanjing, Jiangsu Province, China
    Advisor: Prof. Yunliang Shi

ACADEMIC EMPLOYMENT 🏛️💼

  • Senior Research Associate, Lead Data Scientist (Aug 2017-Present)
    Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
    Leading innovations in data science and machine learning, and the modeling efforts in remote sensing and air pollution (exposure and health effects)
  • Research Associate (Aug 2017-July 2014)
    Department of Preventive Medicine, University of Southern California, Los Angeles, CA
  • Associate Specialist (June 2013-June 2014)
    Program in Public Health, University of California, Irvine, CA

HONORS AND AWARDS 🏆🎖️

  1. 2010.6
    The paper about Bayesian risk modeling (Risk Analysis, 30(7), 1157-1175) selected for a media outreach campaign in 2010 by Society for Risk Analysis
  2. 2007.5
    Chinese Academy of Sciences KC Wong Work Incentive Fund
  3. 2004.3
    The Excellent Presidential Scholarship of Chinese Academy of Sciences, 2004

WORKSHOP AND PRESENTATION 🎤📅

  1. Biweekly workshop: “Air pollution and exposure modeling” (2015-present, University of Southern California, California, USA)
  2. Invited presentation: “GCN-assisted U-Net for segmentation of OCT images” (Bay area data science workshop, Mar. 27, 2021)
  3. Invited presentation: “Enhancing semantic segmentation with contextual information” (Bay area data science workshop, Dec. 07, 2019)

Publication top Notes:

Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias

Multiscale Entropy-Based Surface Complexity Analysis for Land Cover Image Semantic Segmentation

Generating Fine-Scale Aerosol Data through Downscaling with an Artificial Neural Network Enhanced with Transfer Learning

Encoder–Decoder Full Residual Deep Networks for Robust Regression and Spatiotemporal Estimation

Multi-Scale Residual Deep Network for Semantic Segmentation of Buildings with Regularizer of Shape Representation

Optimal Inversion of Conversion Parameters from Satellite AOD to Ground Aerosol Extinction Coefficient Using Automatic Differentiation