Ahmet Güneyli | Artificial intelligence Awards | Best Researcher Award

Prof. Dr. Ahmet Güneyli | Artificial intelligence Awards | Best Researcher Award 

Prof. Dr. Ahmet Güneyli, European University of Lefka, Cyprus.

Ahmet GÜNEYLİ is a Professor of Turkish Language Teaching at the European University of Lefke in North Cyprus. With over two decades of academic experience, he has made significant contributions to Turkish language education, educational sciences, and teacher training. His career spans roles from Assistant Professor at Near East University to his current position as Professor. He supervises numerous master’s and Ph.D. theses, fostering research in multilingual education, instructional strategies, and educational management. Prof. GÜNEYLİ is an active participant in academic publishing and conference presentations, establishing himself as a leading figure in his field.

Professional Profile

Scopus

ORCID

Researcher Suitability Summary for Best Researcher Award

Professor Ahmet Güneyli exhibits exceptional academic and research credentials, positioning him as a strong candidate for the Research for Best Researcher Award. His scholarly achievements, significant contributions to Turkish language education, and commitment to mentoring young researchers underscore his suitability for this recognition.

Education 🎓

  • Undergraduate: Bachelor’s in Preschool & Primary School Education, Teachers Training College, Cyprus (2000).
  • Master’s: M.A. in Educational Sciences with a focus on Turkish Language Teaching, Ankara University, Turkey (2003).
  • Ph.D.: Educational Sciences specializing in Turkish Language Teaching, Ankara University, Turkey (2007).

Ahmet’s academic journey reflects his dedication to Turkish language education and instructional methodologies. His rigorous training has equipped him to address complex educational challenges effectively.

Experience 💼

Ahmet began his career as an Assistant Professor at Near East University in 2009, rising to Associate Professor in 2015. By 2021, he achieved full professorship at the European University of Lefke. His leadership includes supervising theses on multilingual education, bilingual instructional methods, and organizational analysis in education. His work combines practical applications with theoretical frameworks, enhancing education quality in Northern Cyprus.

Research Interests 🔬

Prof. GÜNEYLİ focuses on Turkish language education, bilingual instructional methods, and educational program evaluation. His interdisciplinary approach integrates educational sciences with language studies, aiming to advance instructional techniques and organizational efficiency in schools. His research supports inclusive and multilingual education policies.

Awards 🏆

Ahmet has earned numerous awards for his contributions to Turkish language teaching and educational sciences, underscoring his academic and professional excellence. These honors recognize his innovative teaching methods, impactful research, and dedication to advancing education.

Publications Top Notes 📚

Understanding University Students’ Foreign Language Learning Attitudes: An Analysis Based on Stereotypes

Exploring Teacher Awareness of Artificial Intelligence in Education: A Case Study from Northern Cyprus

Turkish Language Teachers’ Perspectives on Listening Skills Education in Turkey and Northern Cyprus

The effectiveness of virtual reality-based technology on foreign language vocabulary teaching to children with attention deficiency hyperactivity disorder

Examining Conjoint Behavioral Consultation to Support 2e-Autism Spectrum Disorder and Gifted Students in Preschool with Academic and Behavior Concerns

 

Assoc. Prof. Dr. Mahmoud Bayat | Artificial intelligence Award | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Bayat | Artificial intelligence Award | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Bayat, Research Institute of Forests and Rangelands, Iran

Mahmoud Bayat is an Assistant Professor at the Research Institute of Forests and Rangelands, part of the Agricultural Research, Education, and Extension Organization (AREEO) in Tehran, Iran. He earned his B.A., M.Sc., and Ph.D. degrees from the University of Tehran, specializing in forestry science. Mahmoud has collaborated with renowned researchers, including Dr. Charles P.-A. Bourque, Dr. Pete Bettinger, Dr. Eric Zenner, Dr. Aaron Weiskittel, Dr. Harold Burkhart, and Dr. Timo Pukkala. His research focuses on forest modeling and inventory, with particular interest in applying artificial intelligence and machine learning techniques in forestry. Currently, he is working on projects related to growth and yield models for uneven-aged and mixed broadleaf forests using neural networks and the monitoring and mapping of tree species richness in northern Iran’s forests through symbolic regression and artificial neural networks. Mahmoud is proficient in statistical tools such as SPSS and MATLAB, and he is eager to share his expertise and discuss potential collaborations. For more information, his profiles can be found on ResearchGate, Google Scholar, and Scopus.

Professional Profile:

SCOPUS

 

Mahmoud Bayat’s Suitability for the Research for Best Researcher Award

Based on the provided details, Mahmoud Bayat demonstrates a strong candidacy for the Research for Best Researcher Award due to his extensive academic and professional contributions. Below is a summary supporting his suitability

Education 🎓

  • Ph.D. in Forestry Science
    University of Tehran, Iran
  • M.Sc. in Forestry Science
    University of Tehran, Iran
  • B.A. in Forestry Science
    University of Tehran, Iran

Work Experience 🏢

  • Assistant Professor
    Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO)
    Tehran, Iran
    Year: [Specify Year] – Present
  • Research Collaborator
    Worked with:

    • Dr. Charles P.-A. Bourque
    • Dr. Pete Bettinger
    • Dr. Eric Zenner
    • Dr. Aaron Weiskittel
    • Dr. Harold Burkhart
    • Dr. Timo Pukkala

Research Interests 🔍

  • Forest modeling and inventory
  • Application of artificial intelligence and machine learning in forestry

Current Projects 📊

  1. Growth and Yield Models for Uneven-Aged and Mixed Broadleaf Forest
    • Method: Neural Network
  2. Monitoring, Mapping, and Modeling Variation in Tree Species Richness
    • Method: Symbolic Regression and Artificial Neural Networks
    • Location: Northern Iran Forests

Publication Top Notes:

Comparison of Random Forest Models, Support Vector Machine and Multivariate Linear Regression for Biodiversity Assessment in the Hyrcanian Forests

Projected biodiversity in the Hyrcanian Mountain Forest of Iran: an investigation based on two climate scenarios

Recreation Potential Assessment at Tamarix Forest Reserves: A Method Based on Multicriteria Evaluation Approach and Landscape Metrics

Comparison between graph theory connectivity indices and landscape connectivity metrics for modeling river water quality in the southern Caspian sea basin

Development of multiclass alternating decision trees based models for landslide susceptibility mapping

Modeling Tree Growth Responses to Climate Change: A Case Study in Natural Deciduous Mountain Forests

 

Dr. Tara P Banjade | Artificial Intelligence Awards | Best Researcher Award

Dr. Tara P Banjade | Artificial Intelligence Awards | Best Researcher Award 

Dr. Tara P Banjade, East China University of Technology, Nanchang, China

Dr. Tara P. Banjade is an Associate Professor at the East China University of Technology, Nanchang, China, specializing in applied mathematics, seismic signal processing, and artificial intelligence applications for seismic data processing. He completed his Ph.D. in Applied Mathematics at Harbin Institute of Technology in China in 2020, following a Master’s and Bachelor’s in Mathematics from Tribhuvan University, Nepal. Dr. Banjade’s research focuses on developing mathematical algorithms for denoising seismic data, including 1D earthquake signals and 2D geophysical data like oil, gas, and ground-penetrating radar (GPR) data. His innovative approaches employ techniques such as variational mode decomposition, wavelet transforms, and artificial intelligence, including DARE U-Net for seismic noise attenuation and self-guided singular value decomposition for data edge detection.

Professional Profile:

ORCID

Summary of Suitability for Best Researcher Award

Dr. Tara P. Banjade demonstrates an impressive academic and research profile, particularly within Applied Mathematics and Seismic Signal Processing, fields which align closely with the scope of the Best Researcher Award. His doctoral education from Harbin Institute of Technology and ongoing research position at East China University of Technology position him as a strong candidate.

Education

  1. Harbin Institute of Technology, Harbin, China
    • Ph.D. in Applied Mathematics
    • Duration: September 2015 – January 2020
  2. Tribhuvan University, Kathmandu, Nepal
    • Master’s in Mathematics
    • Duration: 2012 – 2014
  3. Tribhuvan University, Kathmandu, Nepal
    • Bachelor’s in Mathematics
    • Duration: 2006 – 2010

Work Experience

  1. Associate Professor
    • Institution: East China University of Technology, School of Geophysics and Measurement-Control Technology, Nanchang, Jiangxi, China
    • Duration: March 2023 – Present
  2. Founder/Chairperson
    • Organization: Intellisia Institute for Research and Development, Nepal
  3. Research Director
    • Organization: Girija Prasad Koirala Foundation
    • Duration: 2020 – Present
  4. Visiting Scientist
    • Institution: Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Nepal
  5. Founding Member and Mathematics Lecturer
    • Institution: Arunima College, Tribhuvan University, Nepal
    • Duration: 2020 – 2023
  6. Executive Member
    • Organization: Nepal Mathematical Society
    • Duration: 2021 – 2024
  7. Visiting Faculty
    • Institution: School of Mathematical Science, Tribhuvan University, Nepa.

Publication top Notes:

Seismic Random Noise Attenuation Using DARE U-Net

Enhancing seismic data by edge-preserving geometrical mode decomposition

Alireza Amiri-Simkooei | Deep learning | Best Researcher Award

Dr. Alireza Amiri-Simkooei | Deep learning | Best Researcher Award

Associate professor at Delft University of Technology, Netherlands

Alireza Amiri-Simkooei is an accomplished Dutch-Iranian geodesist and academic, currently serving as an Associate Professor at Delft University of Technology. With over two decades of experience in geoscience and remote sensing, he specializes in statistical geodesy, optimization, and machine learning. Alireza’s expertise spans various domains, including artificial intelligence applications in geodesy, acoustic remote sensing, and advanced estimation methods. He has contributed significantly to academia through teaching, research, and editorial roles in prominent journals. Alireza holds a Ph.D. from Delft University of Technology, where his thesis focused on least-squares variance component estimation. His dedication to education and research has earned him numerous accolades, making him a leading figure in his field.

Profile:

ORCID Profile

Strengths for the Award:

  1. Impressive Academic Background:
    • Achievements in education, including being ranked first in both his B.Sc. and M.Sc. programs, reflect a strong foundation in geodesy and optimization engineering.
  2. Diverse Research Interests:
    • His research spans multiple domains such as AI, machine learning, acoustic remote sensing, optimization, and time series analysis, showcasing versatility and adaptability in addressing complex problems.
  3. Substantial Publication Record:
    • With numerous articles in high-impact journals, he demonstrates a strong commitment to advancing knowledge in his fields of expertise. His works cover cutting-edge topics such as machine learning applications in geodesy and acoustic sensing.
  4. Recognition and Awards:
    • Multiple awards and honors highlight his contributions and excellence in research and education, including recognition as an outstanding researcher at various institutions.
  5. Leadership and Mentorship:
    • His roles, such as Director of Research Affairs and various editorial positions, illustrate his leadership capabilities and commitment to the academic community.
  6. Significant Project Experience:
    • His involvement in various funded projects showcases his ability to secure grants and lead impactful research initiatives, often incorporating innovative techniques in machine learning and optimization.

Areas for Improvement:

  1. Broader Collaboration:
    • While he has collaborated on several projects, seeking more interdisciplinary collaborations could enhance the applicability and impact of his research.
  2. Public Engagement:
    • Increasing outreach efforts to engage non-academic audiences could improve the societal impact of his research, especially in applied fields like remote sensing and environmental monitoring.
  3. Emerging Trends:
    • Staying updated with the latest trends in AI and remote sensing technologies could enhance his research scope and application relevance. This might involve exploring new methodologies or integrating other emerging technologies.
  4. Diversity in Funding Sources:
    • Diversifying funding sources beyond governmental and institutional grants could help in securing resources for innovative projects and broaden his research agenda.

Education:

Alireza Amiri-Simkooei earned his B.Sc. in Geodetic Engineering from the University of Isfahan in 1994, graduating first in his class. He continued his studies at K. N. Toosi University of Technology, where he completed his M.Sc. in Optimization Engineering in 1998, again ranking first among his peers. He then pursued a Ph.D. at Delft University of Technology, specializing in Statistical Geodesy from 2002 to 2007. His doctoral thesis focused on least-squares variance component estimation and its applications in GPS technology, supervised by Prof. Dr. Peter J.G. Teunissen. Alireza’s educational journey reflects a strong foundation in engineering and mathematical optimization, underpinned by rigorous research methodologies that have shaped his subsequent contributions to the field.

Experience:

Alireza Amiri-Simkooei has an extensive professional background in academia and research, spanning over two decades. He is currently an Associate Professor at Delft University of Technology in the Department of Geoscience and Remote Sensing. Prior to this, he served as an Assistant Professor and researcher at the same institution, where he contributed to various innovative projects. Alireza also held a full professorship at the University of Isfahan, where he was involved in teaching, departmental leadership, and research administration as the Director of Research Affairs. His earlier positions include postdoctoral research and various academic roles at both Delft University and the University of Isfahan. His diverse experience encompasses research in geodesy, optimization, and acoustic remote sensing, making him a prominent figure in his field.

Awards and Honors:

Alireza Amiri-Simkooei has received numerous prestigious awards throughout his academic career. He was recognized as an outstanding student in both his B.Sc. and M.Sc. programs, ranking first in his classes. In 2002, he obtained an overseas Ph.D. scholarship from the Iranian Ministry of Science. His contributions to the field have earned him accolades such as the Outstanding Researcher award at the University of Isfahan, where he was recognized multiple times. Additionally, Alireza has been honored as an Outstanding Reviewer for the Journal of Surveying Engineering. His leadership roles, including being the Director of Research Affairs at the University of Isfahan, further highlight his impact on the academic community. Alireza continues to contribute to the advancement of geoscience through editorial positions and active involvement in research collaborations, solidifying his reputation as a leading researcher in his field.

Research Focus:

Alireza Amiri-Simkooei’s research focuses on the intersection of artificial intelligence and geodesy, particularly in machine learning applications to enhance geospatial analysis and data processing. He explores various methodologies, including least-squares-based deep learning and support vector regression, to optimize geodetic data estimation and enhance accuracy in measurements. Alireza is also deeply engaged in acoustic remote sensing, developing innovative modeling techniques for wind tunnel acoustics and underwater imaging. His work on statistical variance component estimation and advanced estimation methods, such as Kriging and Kalman filtering, has contributed to improving the reliability of geodetic measurements. Additionally, Alireza investigates time series analysis and stochastic modeling, applying these techniques to various domains, including air transport operations and environmental monitoring. His multifaceted research aims to advance methodologies that integrate geospatial data with artificial intelligence, significantly impacting both theoretical and practical applications in geoscience.

Publications Top Notes:

  1. Combinatorial Nonnegative Matrix-Tensor Factorization for Hyperspectral Unmixing Using a General ℓₕ Norm Regularization
  2. Deep Learning in Standard Least-Squares Theory of Linear Models: Perspective, Development, and Vision
  3. Mussel Culture Monitoring with Semi-Supervised Machine Learning on Multibeam Echosounder Data Using Label Spreading
  4. Multivariate Weighted Total Least Squares Based on the Standard Least-Squares Theory
  5. Impact of Climate Change Parameters on Groundwater Level: Implications for Two Subsidence Regions in Iran Using Geodetic Observations and Artificial Neural Networks (ANN)
  6. Optimization of RFM Problem Using Linearly Programmed ℓ₁-Regularization
  7. Multi-GNSS-Weighted Interpolated Tropospheric Delay to Improve Long-Baseline RTK Positioning
  8. Function-Based Troposphere Tomography Technique for Optimal Downscaling of Precipitation
  9. Estimation of Surface Density Changes Using a Mascon Method in GRACE-like Missions
  10. Linking the Morphology and Ecology of Subtidal Soft-Bottom Marine Benthic Habitats: A Novel Multiscale Approach
  11. Modeling and Prediction of Regular Ionospheric Variations and Deterministic Anomalies
  12. Improving Offset Detection Algorithm of GNSS Position Time-Series Using Spline Function Theory
  13. An Automated PCA-Based Approach Towards Optimization of the Rational Function Model
  14. Experimental Design and Stochastic Modeling of Hydrodynamic Wave Propagation Within Cavities for Wind Tunnel Acoustic Measurements
  15. Geodetic Calibration Network for Total Stations and GNSS Receivers in Sub-Kilometer Distances with Sub-Millimeter Precision
  16. Seafloor Characterization Using Multibeam Echosounder Backscatter Data: Methodology and Results in the North Sea
  17. Unified Least-Squares Formulation of a Linear Model with Hard Constraints
  18. On the Application of Monte Carlo Singular Spectrum Analysis to GPS Position Time Series
  19. Robust Particle Swarm Optimization of RFMs for High-Resolution Satellite Images Based on K-Fold Cross-Validation
  20. Seafloor Classification in a Sand Wave Environment on the Dutch Continental Shelf Using Multibeam Echosounder Backscatter Data

Conclusion:

Alireza Amiri-Simkooei is a highly qualified candidate for the Research for Best Researcher Award. His strong academic background, diverse research interests, extensive publication record, and leadership roles in the academic community position him as a leader in his field. By focusing on broader collaborations, increasing public engagement, and adapting to emerging trends, he can further enhance his contributions to research and society. His track record of excellence indicates that he not only meets the criteria for this award but also has the potential to make even greater impacts in the future.

Mr. Zhongwen Hao | Deep learning Award | Best Researcher Award

Mr. Zhongwen Hao | Deep learning Award | Best Researcher Award 

Mr. Zhongwen Hao, Cranfield University, China

Zhongwen Hao is a Master’s candidate in Aerospace Manufacturing at Cranfield University, UK, and concurrently pursuing a Master of Mechanical Engineering at Nanjing University of Aeronautics and Astronautics, China. He completed his Bachelor’s degree in Electronic Information with a focus on Image Processing from China University of Mining and Technology. His research interests include robot control, visual servoing, image processing, and deep learning. Zhongwen has led notable projects such as visual servoing of robotic arms using deep learning techniques and galaxy image classification. His proficiency in programming with C++, Python, and MATLAB, coupled with his skills in deep learning and image processing, underscores his technical expertise. He has published research on motion prediction and object detection in visual servoing systems. Zhongwen is known for his strong project execution abilities, team spirit, and resilience.

Professional Profile:

Summary of Suitability:

Hao’s research direction aligns well with cutting-edge fields such as robot control, visual servoing, image processing, and deep learning. These areas are highly relevant and significant in contemporary technological advancements. Hao has a solid educational foundation with advanced studies in Aerospace Manufacturing and Mechanical Engineering, complemented by a bachelor’s degree in Electronic Information with a focus on Image Processing. This diverse yet interconnected educational background enhances his research capabilities.

Education

  1. Cranfield University, Bedford, UK
    Master’s Candidate of Aerospace Manufacturing
    Major: Deep Learning and Image Processing
    September 2023 – September 2024
  2. Nanjing University of Aeronautics and Astronautics, Nanjing, China
    Master of Mechanical Engineering
    Major: Mechanical
    September 2022 – June 2025 (Expected)
  3. China University of Mining and Technology, Xuzhou, China
    Bachelor of Electronic Information
    Major: Image Processing
    September 2017 – June 2021

Work Experience

  1. Project Leader
    Research on Visual Servoing of Robotic Arms Based on Deep Learning
    June 2024 – September 2024

    • Led research on target detection using the DETR model, trajectory planning with the PSO algorithm, and motion prediction using BiLSTM and KAN neural networks.
    • Integrated and simulated algorithms in ROS using Gazebo to validate their effectiveness.
  2. Participator
    Galaxy Image Classification Based on Deep Learning
    February 2024 – March 2024

    • Handled image preprocessing and reconstruction, and implemented galaxy image classification using the VIT model, achieving a classification accuracy of 90%.

Publication top Notes:

Motion Prediction and Object Detection for Image-Based Visual Servoing Systems Using Deep Learning

 

Prof. Changgyun Kim | Artificial Intelligence Award | Best Researcher Award

Prof. Changgyun Kim | Artificial Intelligence Award | Best Researcher Award 

Prof. Changgyun Kim, Department of Artificial Intelligence & Software/Samcheok,South Korea

Changgyun Kim is an esteemed academic and researcher associated with Kangwon National University, Department of Artificial Intelligence & Software, and Dongguk University’s Industrial Engineering department in South Korea. His research expertise spans deep learning, healthcare, and data mining. He has made significant contributions to the field, including developing AI-based systems for detecting betting anomalies in sports, diagnosing tooth-related diseases using panoramic images, and creating models for obesity diagnosis using 3D body information. His work is published in renowned journals such as Scientific Reports, Annals of Applied Sport Science, JMIR Medical Informatics, Sensors, Sustainability, the International Journal of Distributed Sensor Networks, and Applied Sciences. Dr. Kim’s notable projects include establishing IoT-based smart factories for SMEs in Korea and developing web applications for obesity diagnosis using data mining methodologies. His extensive research portfolio underscores his commitment to advancing AI applications in various domains

Professional Profile:

ORCID

 

Education

No specific details about Changgyun Kim’s educational background are provided in the provided information. To give a more comprehensive overview, details such as degrees obtained, institutions attended, and fields of study would be needed.

Work Experience

  1. Dongguk University: Jung-gu, Seoul, KR
    • Department: Industrial Engineering
    • Position: Not specified in the provided information.
  2. Kangwon National University
    • Department: Artificial Intelligence & Software
    • Position: Not specified in the provided information.

Publication top Notes:

 

AI-based betting anomaly detection system to ensure fairness in sports and prevent illegal gambling

Detectability of Sports Betting Anomalies Using Deep Learning-based ResNet: Utilization of K-League Data in South Korea

Tooth-Related Disease Detection System Based on Panoramic Images and Optimization Through Automation: Development Study

Development of an Obesity Information Diagnosis Model Reflecting Body Type Information Using 3D Body Information Values

Development of a Web Application Based on Human Body Obesity Index and Self-Obesity Diagnosis Model Using the Data Mining Methodology

Establishment of an IoT-based smart factory and data analysis model for the quality management of SMEs die-casting companies in Korea