Assist Prof Dr. Hwa-Dong Liu | Signal Processing | Best Researcher Award

Assist Prof Dr. Hwa-Dong Liu | Signal Processing | Best Researcher Award

Assist Prof Dr. Hwa-Dong Liu, Undergraduate Program of Vehicle and Energy Engineering, National Taiwan Normal University, Taiwan

Hwa-Dong Liu is an Assistant Professor at National Taiwan Normal University (NTNU) in Taipei, Taiwan, specializing in power electronics, microcontrollers, rail vehicle power systems, and solar power systems. He holds a Ph.D. in Electrical Engineering from National Taiwan University of Science and Technology (NTUST). His research interests include the development of advanced power converters, control strategies for renewable energy systems, and innovative solutions for electric vehicle charging. Dr. Liu has authored numerous papers in reputable journals, with a focus on improving the efficiency and performance of power electronic systems and renewable energy technologies. His recent work includes contributions to energy management systems, high-gain boost converters, and novel MPPT algorithms for solar power generation.

Professional Profile:

Summary of Suitability for Best Researcher Award 

Hwa-Dong Liu has expertise in several cutting-edge fields including power electronics, microcontrollers, rail vehicle power systems, and solar power systems. This diversity indicates a broad impact on multiple important areas of research.

Education

  • Ph.D. in Electrical Engineering from National Taiwan University of Science and Technology (NTUST).

Work Experience

  • Assistant Professor at National Taiwan Normal University (NTNU).

Expertise

  1. Power Electronics
  2. Microcontroller
  3. Rail Vehicle Power Systems
  4. Solar Power Systems

Publication top Notes:

An improved solar step-up power converter for next-generation electric vehicle charging

Hybrid Management Strategy for Outsourcing Electromechanical Maintenance and Selecting Contractors in Taipei MRT

An Improved High Gain Continuous Input Current Quadratic Boost Converter for Next-Generation Sustainable Energy Application

Novel MPPT algorithm based on honey bees foraging characteristics for solar power generation systems

High-Voltage Autonomous Current-Fed Push-Pull Converter with Wireless Communication Applied to X-Ray Generation

 

 

 

Mr. Yeonjae Park | Signal Cleaning Award | Best Scholar Award

Mr. Yeonjae Park | Signal Cleaning Award | Best Scholar Award

Mr. Yeonjae Park, The Graduate School of Yonsei University, South Korea

Yeonjae Park is a Master’s student at Yonsei University in the Department of Medical Informatics and Biostatistics, under the guidance of Professor Dae Ryong Kang. With a strong foundation in Computer and Telecommunication Engineering as well as Information and Statistics, Park obtained dual B.S. degrees from Yonsei University, where they were mentored by Professors Cho Young-rae and Na Seongyong. Their research interests span machine learning, deep learning, generative models, multi-modal data analysis, and time series forecasting. Park has gained valuable research experience through various positions, including as a researcher intern at the Artificial Intelligence-Information Retrieval Lab, a researcher at the Applied Data Science Lab, and their current role at the National Health BigData Clinical Research Institute. Their projects encompass a range of topics, from text extraction and OCR recognition to complex analyses in genomics, disease correlations, and the effectiveness of medical treatments.

Professional Profile:

Summary of Suitability for Best Scholar Award:

Yeonjae Park has a strong academic foundation, holding dual Bachelor’s degrees in Computer and Telecommunication Engineering and Information and Statistics from Yonsei University, one of South Korea’s most prestigious institutions. Currently, Yeonjae is pursuing a Master’s degree in Medical Informatics and Biostatistics at the same university, under the guidance of a notable advisor, Dae Ryong Kang.

Education 📚

  • Samseon Middle School, Seoul, Korea (Mar. 2010 ~ Jul. 2010)
  • SungSan Middle School, Seoul, Korea (Jul. 2010 ~ Feb. 2013)
  • Kwangsung High School, Seoul, Korea (Mar. 2013 ~ Feb. 2016)
  • Yonsei University, Department of Computer and Telecommunication Engineering 🖥️ (Mar. 2016 ~ Aug. 2021)
    • B.S. in Computer and Telecommunication Engineering
    • Advisor: Prof. Cho Young-rae
  • Yonsei University, Department of Information and Statistics 📊 (Feb. 2016 ~ Aug. 2021)
    • B.S. in Information and Statistics
    • Advisor: Prof. Na Seongyong
  • Yonsei University, Department of Medical Informatics and Biostatistics 🧬 (Aug. 2021 ~ Present)
    • Master Student
    • Advisor: Prof. Dae Ryong Kang

Research Interests 🔍

  • Machine Learning / Deep Learning 🤖
  • Generative Models 🌀
  • Multi Modal 🧠
  • Time Series Forecasting ⏳

Research Experiences 💼

  • Researcher Intern at Artificial Intelligence-Information Retrieval Lab, Yonsei University, Korea (May. 2019 ~ Apr. 2020)
  • Researcher at Applied Data Science Lab, Yonsei University, Korea (May. 2020 ~ Jan. 2021)
  • Researcher at National Health BigData Clinical Research Institute, Korea (Jan. 2021 ~ Present)

 

Publication top Notes:

Development and Validation of a Real-Time Service Model for Noise Removal and Arrhythmia Classification Using Electrocardiogram Signals

Intracardiac Echocardiogram: Feasibility, Efficacy, and Safety for Guidance of Transcatheter Multiple Atrial Septal Defects Closure

 

 

 

Dr. Sangyeop Lee | Signal Processing | Best Researcher Award

Dr. Sangyeop Lee | Signal Processing | Best Researcher Award

Dr. Sangyeop Lee, LG Electronics, South Korea

Sangyeop Lee, Ph.D., is a seasoned Senior Researcher and Data Scientist at LG Electronics, currently based at the Life Data Fusion Laboratory within the B2B Advanced Technology Center in Seoul, Republic of Korea. With a robust academic background, including a Ph.D. in Computer Science from Yonsei University, Sangyeop has been actively involved in both research and academia. His research interests span various domains, notably including LLM fine-tuning, artificial neural networks for biomedical signal processing, and context-awareness in the clinical domain using machine learning techniques. Throughout his career, he has contributed significantly to cutting-edge projects such as Smartcare in Kindergarten and neptuNE, addressing critical issues like child behavior monitoring and home healthcare. Sangyeop’s expertise extends to teaching and mentoring, evident from his engagements as a lecturer and teaching assistant at Yonsei University. His dedication to advancing technology and solving real-world problems underscores his commitment to innovation in the fields of data science and healthcare.

Professional Profile

Orcid

 

Affiliation:

Sangyeop is currently affiliated with the LEAD technology task at the Life Data Fusion Laboratory within the B2B Advanced Technology Center at LG Electronics, located in Seocho R&D Campus, Seoul, Republic of Korea.

Research Interests:

His research interests include LLM fine-tuning, artificial neural networks for biomedical signal processing, and context-awareness using machine learning techniques in clinical settings.

Teaching Experience:

Sangyeop has contributed to education as a lecturer and teaching assistant at Yonsei University, covering subjects like AI for Medical Problems and Engineering Information Processing, where he taught Python practice.

Projects:

  1. Smartcare in Kindergarten: Collaborated with DNX Kidsnote and Severance Hospital to utilize AI technology in studying children’s behavior and location in kindergartens using wearables/radars.
  2. neptuNE: Developed sensors and mobile devices for home monitoring, addressing nocturnal enuresis in children, in collaboration with Samsung Electronics and Severance Hospital.
  3. Ready-Made Implant: Conducted a confidential study on mass production with pre-made implants and recommending customized implant models through dental data analysis, in collaboration with Ostem Implant and Yonsei University.

Publications:

Sangyeop has several publications in prestigious conferences and journals, including IEEE Radar Conference and Sensors, focusing on topics like artificial intelligence, biomedical engineering, and healthcare.

Application:

Sangyeop has contributed to the development of in-home monitoring with wearables and NE Diary Application, enhancing healthcare solutions through technology.

Sangyeop’s dedication to advancing data-driven solutions in healthcare underscores his commitment to innovation and improving patient outcomes. 🌟

Publications Notes:📄

Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis

Continuous body impedance measurement to detect bladder volume changes during urodynamic study: A prospective study in pediatric patients