Amir Fayyaz | Sensor Characterization | Best Researcher Award

Dr. Amir Fayyaz | Sensor Characterization | Best Researcher Award

Assistant prof. at National center for Physics, Islamabad, Pakistan

Amir Fayyaz is a dedicated researcher and educator in the field of physics, specializing in laser-induced breakdown spectroscopy (LIBS) and elemental analysis. Based in Islamabad, Pakistan, he has amassed extensive experience across various academic and research institutions, including The University of Arizona and Quaid-i-Azam University. His contributions encompass advanced spectroscopic techniques for chemical analysis, focusing on rare earth elements and high-entropy alloys. Amir is also an active participant in national and international conferences, where he shares his findings and innovations. His commitment to education is evident through his roles as a teaching assistant and lecturer, where he inspires the next generation of physicists.

Profile:

Strengths for the Award:

  1. Extensive Research Experience: Amir Fayyaz possesses a robust background as a research associate, assistant, and scholar in prestigious institutions, including The University of Arizona and Quaid-i-Azam University. His hands-on experience with advanced techniques such as Laser-Induced Breakdown Spectroscopy (LIBS) and time-of-flight mass spectrometry (TOF-MS) demonstrates his technical expertise.
  2. Diverse Skill Set: His proficiency in various analytical techniques, including EDX, XRF, and chemometric analyses, showcases his versatility. He has successfully conducted elemental analysis of rare earth elements and high entropy alloys, positioning him at the forefront of current scientific inquiries.
  3. Publication Record: Amir has a commendable publication record with multiple articles in reputable journals, highlighting his contributions to the field. His work on LIBS-assisted PCA and elemental analysis of rare earth ores is particularly noteworthy.
  4. Conference Engagement: His active participation in national and international conferences underscores his commitment to sharing knowledge and collaborating with the scientific community. Winning a best presentation award at a prestigious conference further validates his research impact.
  5. Teaching Experience: Amir has demonstrated his capability to convey complex concepts effectively as a teaching assistant and lecturer. This dual role as a researcher and educator enhances his profile, as it reflects his ability to mentor future scientists.
  6. Research Funding: Securing funding for multiple research projects indicates his research proposal skills and the trust of funding bodies in his capabilities. This experience is crucial for leading significant research initiatives.

Areas for Improvement:

  1. Broader Research Collaboration: While Amir has engaged in several projects, expanding his collaborative efforts across different disciplines could enhance his research impact and foster innovative solutions to complex problems.
  2. Outreach Activities: Increasing involvement in outreach or public engagement initiatives could raise awareness of his research and its societal implications, thereby enhancing the visibility of his work.
  3. Diversity of Research Topics: Exploring additional areas outside his current focus could enrich his portfolio and open avenues for interdisciplinary research.
  4. Grant Writing Skills: Further developing grant writing skills will be beneficial for securing more funding opportunities and leading larger research projects.

Education:

Amir Fayyaz holds a Master’s degree in Physics from Quaid-i-Azam University, Islamabad, where he excelled in research on atomic and molecular physics. His academic journey began with a Bachelor’s degree in Physics, laying a strong foundation in theoretical and experimental physics. His education is complemented by various workshops and seminars that enhance his research skills, particularly in spectroscopy and materials science. Amir has been awarded a Departmental Fellowship and an International Research Support Initiative Scholarship, reflecting his academic prowess and dedication to advancing the field of physics.

Experience:

Amir’s professional experience spans multiple prestigious institutions. As a Research Associate at The University of Arizona, he optimized 2D LIBS mapping systems and conducted chemical analyses of ores. His previous roles as a Research Assistant at Quaid-i-Azam University and as a Visiting Research Scholar at the National Center for Physics involved calibrating LIBS systems and conducting elemental analyses. Amir has also served as a Teaching Assistant and Specialist Lecturer, where he taught various undergraduate physics courses. His work has been recognized through presentations at numerous conferences, showcasing his research on LIBS and its applications.

Awards and Honors:

Amir has received several prestigious awards, highlighting his academic and research achievements. He was honored with a Departmental Fellowship from Quaid-i-Azam University and an International Research Support Initiative Scholarship from the Higher Education Commission of Pakistan. His outstanding presentation skills earned him the Best Presentation Prize at the International Nathiagali Summer College. Additionally, he was recognized with the Prime Minister Laptop Award for his academic excellence. These accolades reflect his commitment to research and education, as well as his potential for future contributions to the field of physics.

Research Focus:

Amir’s research primarily centers on laser-induced breakdown spectroscopy (LIBS) and its applications in elemental analysis. His work includes optimizing LIBS systems for analyzing rare earth elements and high-entropy alloys, as well as developing calibration-free techniques for various materials. He also explores the use of spectroscopic methods in characterizing polymers and other advanced materials. Amir’s research aims to enhance the efficiency and accuracy of elemental detection, contributing to advancements in materials science and environmental analysis. His ongoing projects reflect a strong commitment to innovative research that addresses contemporary challenges in physics and engineering.

Publications Top Notes:

  • Elemental analysis of cement by calibration-free laser induced breakdown spectroscopy (CF-LIBS) and comparison with laser ablation–time-of-flight–mass spectrometry (LA-TOF-MS)
    A Fayyaz, U Liaqat, Z Adeel Umar, R Ahmed, M Aslam Baig, Analytical Letters 52 (12), 1951-1965 (2019)
  • VO2 thin film based highly responsive and fast VIS/IR photodetector
    ZA Umar, R Ahmed, H Asghar, U Liaqat, A Fayyaz, MA Baig, Materials Chemistry and Physics 290, 126655 (2022)
  • LIBS assisted PCA analysis of multiple rare-earth elements (La, Ce, Nd, Sm, and Yb) in phosphorite deposits
    A Fayyaz, H Asghar, AM Alshehri, TA Alrebdi, Heliyon 9 (3) (2023)
  • Combination of laser-induced breakdown spectroscopy, and time–of–flight mass spectrometry for the quantification of CoCrFeNiMo high entropy alloys
    A Fayyaz, U Liaqat, K Yaqoob, R Ahmed, ZA Umar, MA Baig, Spectrochimica Acta Part B: Atomic Spectroscopy 198, 106562 (2022)
  • Laser spectroscopic characterization for the rapid detection of nutrients along with CN molecular emission band in plant-biochar
    TA Alrebdi, A Fayyaz, H Asghar, S Elaissi, LAE Maati, Molecules 27 (15), 5048 (2022)
  • Vibrational Emission Study of the CN and C2 in Nylon and ZnO/Nylon Polymer Using Laser-Induced Breakdown Spectroscopy (LIBS)
    TA Alrebdi, A Fayyaz, A Ben Gouider Trabelsi, H Asghar, FH Alkallas, Polymers 14 (17), 3686 (2022)
  • Quantification of aluminum gallium arsenide (AlGaAs) wafer plasma using calibration-free laser-induced breakdown spectroscopy (CF-LIBS)
    TA Alrebdi, A Fayyaz, H Asghar, A Zaman, M Asghar, FH Alkallas, Molecules 27 (12), 3754 (2022)
  • Analysis of Rare Earth Ores Using Laser-Induced Breakdown Spectroscopy and Laser Ablation Time-of-Flight Mass Spectrometry
    A Fayyaz, R Ali, M Waqas, U Liaqat, R Ahmad, ZA Umar, MA Baig, Minerals 13 (6), 787 (2023)
  • Supercapacitive behavior and energy storage properties of molybdenum carbide ceramics synthesized via ball milling technique
    K Naseem, Z Ali, P Chen, A Tahir, F Qin, A Fayyaz, MD Albaqami, Ceramics International 50 (6), 9572-9580 (2024)
  • Elemental study of Devarda’s alloy using calibration free-laser induced breakdown spectroscopy (CF‒LIBS)
    J Iqbal, TA Alrebdi, A Fayyaz, H Asghar, SKH Shah, M Naeem, Laser Physics 33 (3), 036001 (2023)
  • Enhanced generation of hydrogen through hydrolysis of biochar-coupled magnesium: Analysis of the performance of biochar-support and the effect of metallic coating on biochar
    K Naseem, J Zhang, A Fayyaz, W Hayat, S Ahmed, S Khursheed, Journal of Environmental Chemical Engineering 12 (1), 111770 (2024)
  • Laser-Induced breakdown spectroscopy and energy-dispersive x-ray analyses for green mineral fluorite (CaF2)
    A Fayyaz, H Asghar, TA Alrebdi, Results in Physics 52, 106850 (2023)
  • Multi-Spectroscopic Characterization of MgO/Nylon (6/6) Polymer: Evaluating the Potential of LIBS and Statistical Methods
    A Fayyaz, H Asghar, M Waqas, A Kamal, WA Al-Onazi, AM Al-Mohaimeed, Polymers 15 (15), 3156 (2023)
  • Optical and thermal characterization of pure CuO and Zn/CuO using laser-induced breakdown spectroscopy (LIBS), x-ray fluorescence (XRF), and ultraviolet–visible (UV–Vis)
    MI Khan, A Fayyaz, S Mushtaq, H Asghar, TA Alrebdi, H Cabrera, R Ali, Laser Physics Letters 20 (8), 086001 (2023)
  • Chemometrics and Spectroscopic Analyses of Peganum harmala Plant’s Seeds by Laser-Induced Breakdown Spectroscopy
    TA Alrebdi, A Fayyaz, H Asghar, A Kamal, J Iqbal, NK Piracha, Applied Sciences 13 (5), 2780 (2023)
  • Spectroscopical Characterization of Copper–Iron (Cu-Fe) Alloy Plasma Using LIBS, ICP-AES, and EDX
    A Fayyaz, J Iqbal, H Asghar, TA Alrebdi, AM Alshehri, W Ahmed, N Ahmed, Metals 13 (7), 1188 (2023)
  • Analytical Techniques for Elemental Analysis: LIBS, LA-TOF-MS, EDX, PIXE, and XRF: A Review
    MA Baig, A Fayyaz, R Ahmed, ZA Umar, H Asghar, U Liaqat, R Hedwig, Proceedings of the Pakistan Academy of Sciences: A. Physical and Biological Sciences (2024)
  • CF-LIBS based elemental analysis of Saussurea simpsoniana medicinal plant: a study on roots, seeds, and leaves
    A Fayyaz, N Ali, ZA Umar, H Asghar, M Waqas, R Ahmed, R Ali, MA Baig, Analytical Sciences 40 (3), 413-427 (2024)

Conclusion:

Amir Fayyaz is an exceptionally qualified candidate for the Best Researcher Award. His extensive experience in advanced research methodologies, a strong publication record, and a commitment to education exemplify his dedication to advancing scientific knowledge. By addressing areas for improvement, he could enhance his already impressive profile and contribute even more significantly to the field of physics and materials science. His potential for future contributions, coupled with his current achievements, strongly supports his nomination for this award.

Dr Naifeng He | Applications of Sensors| Best Researcher Award

Dr Naifeng He | Applications of Sensors| Best Researcher Award 

Dr Naifeng He, Nanjing University of Aeronautics and Astronautics,China

He Naifeng is a dedicated PhD candidate at the School of Automation, Nanjing University of Aeronautics and Astronautics. Specializing in motion control and navigation of wheel-legged mobile robots, his research integrates traditional control techniques with reinforcement learning to enhance robotic autonomy in dynamic environments.

Professional Profile:

Summary of Suitability for the Best Researcher Award:

He Naifeng, a PhD candidate at the School of Automation, Nanjing University of Aeronautics and Astronautics, specializes in motion control and navigation of wheel-legged mobile robots. His innovative research integrates traditional control techniques with reinforcement learning, significantly enhancing the autonomy and agility of mobile robots in dynamic environments. With several published articles and a pending patent, He Naifeng demonstrates a commitment to advancing the field of robotics.

Education

He Naifeng is pursuing a PhD at the prestigious Nanjing University of Aeronautics and Astronautics, where he has built a strong foundation in automation and robotics. His academic journey reflects a commitment to advancing technology in mobile robotics, demonstrating a keen interest in both theoretical knowledge and practical applications.

Work Experience

As a PhD candidate, He Naifeng is actively involved in cutting-edge research projects focused on optimizing navigation systems for wheel-legged robots. His work includes consultancy projects that apply advanced navigation algorithms in industrial inspection settings, showcasing his ability to translate research into real-world solutions.

Skills

He possesses a robust skill set that includes motion control system design, reinforcement learning applications, and path planning for autonomous systems. His expertise in integrating traditional control methods with advanced machine learning techniques positions him as a valuable asset in the field of robotics.

Awards and Honors

He Naifeng’s research has garnered recognition, including publications in prominent journals such as Sensors and Actuators. He is also in the process of patenting a dynamic obstacle avoidance control system for wheel-legged robots, reflecting his innovative contributions to the field.

Membership

He is an active member of professional organizations related to automation and robotics, facilitating collaborations and networking opportunities within the scientific community. His membership underscores his commitment to staying at the forefront of advancements in his field.

Teaching Experience

He Naifeng has experience in guiding students and peers through complex topics in automation and robotics. His ability to communicate intricate concepts effectively makes him a respected figure among his colleagues and students.

Research Focus

His research focuses on autonomous navigation for wheel-legged robots, with particular emphasis on reinforcement learning in control systems and intelligent motion control. He aims to develop practical applications that enhance the performance and adaptability of mobile robots in challenging environments.

Publication top Notes:

A Supervised Reinforcement Learning Algorithm for Controlling Drone Hovering

A Self-Adaptive Double Q-Backstepping Trajectory Tracking Control Approach Based on Reinforcement Learning for Mobile Robots

A State-Compensated Deep Deterministic Policy Gradient Algorithm for UAV Trajectory Tracking

Adaptive PID Trajectory Tracking Algorithm Using Q-Learning for Mobile Robots

Dr Susana Novais | Physical Sensors | Best Researcher Award

Dr Susana Novais |Physical Sensors| Best Researcher Award

Dr Susana Novais ,Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência INESC TEC, Portugal

Dr. Susana Cristina Ribeiro Novais is an expert in optics and optoelectronics, currently serving as an Assistant Researcher at INESC TEC in Portugal. With extensive experience in both research and academic environments, Dr. Novais has made significant contributions to the field of optical fiber sensors and biomedical technologies. She holds a Ph.D. in Physics Engineering with a specialization in Optics and Optoelectronics, and has been involved in numerous high-impact research projects and international conferences. Her work is recognized for its innovation and depth, positioning her as a leading figure in her domain.

Professional Profile:

Suitability for the Best Researcher Award: 

Susana Cristina Ribeiro Novais is a highly deserving candidate for the Best Researcher Award due to her significant contributions to the fields of optics and biomedical technologies. Her impressive research output, leadership roles, and active participation in academic and professional communities highlight her exceptional qualifications. By addressing the identified areas for improvement, Dr. Novais could further strengthen her already distinguished profile, making her an exemplary choice for this prestigious recognition. Her work not only advances scientific knowledge but also has practical implications in technology and healthcare, underscoring her value as a leading researcher.

Education

Dr. Susana Cristina Ribeiro Novais earned her Ph.D. in Physics Engineering, specializing in Optics and Optoelectronics, from Universidade de Aveiro, Portugal, in February 2019, with distinction. Her doctoral thesis focused on optical fiber sensors for challenging media. She completed her M.Sc. in Biomedical Technologies with a focus on Biomechanics and Rehabilitation at Instituto Politécnico de Bragança in 2012. Her B.Sc. in Biomedical Engineering, also from Instituto Politécnico de Bragança, was awarded in 2010, with a thesis on vital sign monitoring systems.

 Work Experience

Dr. Novais is currently an Assistant Researcher at INESC TEC, where she has been working since June 2021. Prior to this role, she served as a Research Fellow at INESC TEC and Universidade de Aveiro, contributing to several research projects in optics and biomedical technologies. Her experience also includes working with Johnson Matthey Systems in the UK and conducting short-term scientific missions at Helmholtz Institute and Johnson Matthey Battery Systems. Her roles have involved significant contributions to both applied and theoretical research.

 Skills

Dr. Susana Novais possesses a diverse skill set in physics and optics, including expertise in optical fiber sensors and optoelectronics. She is proficient in designing and implementing advanced optical systems for various applications. Her skills extend to biomedical technologies, particularly in developing micro-devices and monitoring systems. She is also adept in project management, scientific communication, and technical review, with extensive experience in organizing conferences and reviewing scientific literature.

 Awards and Honors

Dr. Novais has been recognized for her outstanding contributions to optics and biomedical technologies. Her Ph.D. thesis was awarded with praise and distinction, highlighting the significance of her research on optical fiber sensors. Her involvement in key projects such as FCT project ENDOR and European Project SIRBATT underscores her reputation in the field. She has also been honored for her role as a local organizer and technical chair for major conferences like EOSAM 2022.

 Membership

Dr. Susana Cristina Ribeiro Novais is an active member of several professional organizations related to optics and physics. She has been involved in the European Optical Society and various scientific committees, reflecting her engagement with the scientific community. Her memberships provide her with platforms to contribute to advancements in her field and collaborate with other experts in optics and optoelectronics.

 Teaching Experience

Dr. Novais has extensive teaching experience, including her role as a co-supervisor for Master’s theses in Engineering Physics at Universidade Católica Portuguesa. Her academic involvement extends to serving as a main examiner and jury member for the best thesis in optics and photonics in Portugal. Her teaching experience reflects her commitment to educating the next generation of scientists and engineers in the field of optics and optoelectronics.

 Research Focus

Dr. Susana Novais’s research focuses on optics and optoelectronics, particularly in the development and application of optical fiber sensors. Her work includes advancing technologies for challenging media and exploring innovative solutions in biomedical technologies. She is involved in high-impact projects such as the FCT project ENDOR and European Project SIRBATT, addressing key issues in renewable energy and sensor technology. Her research aims to push the boundaries of current optical technologies and their applications.

Publication top Notes:
  • “Coreless silica fiber sensor based on self-image theory and coated with graphene oxide”
    • Year: 2024
    • Journal: Optical Sensing and Detection VIII (Conference Paper)
    • DOI: 10.1117/12.3022374
  • “Linear Fiber Laser Configurations for Optical Concentration Sensing in Liquid Solutions”
    • Year: 2024
    • Journal: Photonics
    • DOI: 10.3390/photonics11050393
  • “Linear Fiber Laser Configurations for Optical Concentration Sensing in Liquid Solutions”
    • Year: 2024
    • Type: Preprint
    • DOI: 10.20944/preprints202402.0004.v1
  • “Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating”
    • Year: 2024
    • Journal: Sensors
    • DOI: 10.3390/s24030891
  • “Paracetamol concentration-sensing scheme based on a linear cavity fiber laser configuration”
    • Year: 2023
    • Journal: Optical Fiber Technology
    • DOI: 10.1016/j.yofte.2023.103407
  • “Refractive Index Measurements of Ethanol–Water Binary Liquid Solutions Using a Graded-Index Fiber Tip Sensor”
    • Year: 2023
    • Journal: IEEE Sensors Letters
    • DOI: 10.1109/LSENS.2023.3303079
  • “Measurement of paracetamol concentration using a fiber laser system”
    • Year: 2023
    • Conference: 2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)
    • DOI: 10.1109/enbeng58165.2023.10175344
  • “Transmissive glucose concentration plasmonic Au sensor based on unclad optical fiber”
    • Year: 2023
    • Conference: 2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)
    • DOI: 10.1109/enbeng58165.2023.10175342
  • “Erbium-doped fiber ring cavity for the measurement of refractive index variations”
    • Year: 2023
    • Conference: European Workshop on Optical Fibre Sensors (EWOFS 2023)
    • DOI: 10.1117/12.2678101
  • “Measurement of Paracetamol Concentration Using an Erbium-Doped Fiber Ring Cavity”
    • Year: 2023
    • Journal: Photonics
    • DOI: 10.3390/photonics10010050