Pablo David Esquinazi | Superconductivity | Best Researcher Award

Prof Dr. Pablo David Esquinazi | Superconductivity | Best Researcher Award

Prof. Emeritus at University of Leipzig, Germany

Prof. Dr. Pablo David Esquinazi, born on May 25, 1956, is a distinguished physicist and Professor Emeritus at Universität Leipzig. With a career spanning over four decades, he is renowned for his contributions to condensed matter physics, particularly in superconductivity and magnetism. He has published extensively and holds multiple patents, reflecting his innovative spirit. A dedicated mentor, he has also played a pivotal role in shaping future scientists through various academic programs and collaborations. As a passionate researcher, he remains engaged in advancing scientific knowledge and applications.

Profile:

Strengths for the Award:

  1. Extensive Academic Background: Prof. Esquinazi has a solid educational foundation in physics, with degrees from prestigious institutions, including the Instituto Balseiro and Universität Bayreuth. His extensive academic experience, culminating in a Habilitation, underscores his deep expertise in the field.
  2. Professional Contributions: With nearly three decades as a professor and division speaker at Universität Leipzig, he has made significant contributions to the field of condensed matter physics, specifically in superconductivity and magnetism.
  3. Research Impact: His work has led to substantial advancements in understanding phenomena like granular superconductivity and defect-induced magnetism. His numerous publications in high-impact journals reflect a strong research output, with several articles receiving citations, indicating the influence of his work on the scientific community.
  4. Innovation and Patents: Prof. Esquinazi holds multiple patents in advanced materials and quantum sensors, demonstrating his commitment to translating research into practical applications. This innovation reflects his ability to push the boundaries of current scientific knowledge.
  5. Leadership in Collaborative Research: He has been actively involved in collaborative research projects, such as the SFB 762 and DFG FOR 404, showcasing his ability to work effectively within interdisciplinary teams and lead significant research initiatives.
  6. Recognition and Awards: The Rudolf-Kaiser-Award highlights his noteworthy contributions to the field, affirming his status as a leading researcher in physics.
  7. Mentorship and Education: His role as a member of the Graduate School BuildMona indicates his dedication to mentoring the next generation of physicists, enhancing the academic community and contributing to knowledge dissemination.

Areas for Improvement:

  1. Broader Outreach: While Prof. Esquinazi has contributed significantly to academic journals, expanding outreach through public engagement or interdisciplinary collaboration could further enhance his visibility and impact.
  2. Interdisciplinary Projects: Increasing participation in interdisciplinary research could lead to innovative breakthroughs by applying his expertise in new contexts, particularly in emerging fields like quantum computing or nanotechnology.
  3. Increased Publications in Open Access: Although many of his works are open access, increasing the number of freely available publications could broaden access to his research, fostering greater collaboration and recognition.
  4. Funding and Grants: Seeking larger or more diverse funding opportunities could enable more extensive research projects and support additional students or postdocs.

Education:

Prof. Esquinazi completed his studies in physics at the University of Tucuman and Instituto Balseiro in Argentina, earning his diploma in 1979. He furthered his education with a Doctorate from Instituto Balseiro in 1983, followed by a Habilitation at Universität Bayreuth in 1991. His academic journey was marked by mentorship from prominent physicists, shaping his expertise in low-temperature physics and materials science. This robust educational foundation has enabled him to contribute significantly to his field, fostering a deep understanding of complex physical phenomena.

Experience:

With professional experience beginning in 1980, Prof. Esquinazi served as a research associate and postdoc at renowned institutions, including CAB-Bariloche and Universität Heidelberg. He was a professor at Universität Bayreuth from 1988 to 1994 before joining Universität Leipzig, where he led the Felix-Bloch Institute until his retirement in 2022. His leadership in collaborative research initiatives, including the SFB 762, highlights his ability to drive impactful projects in the field. Throughout his career, he has also been an invited professor at several international universities, promoting global scientific collaboration.

Awards and Honors:

In 1993, Prof. Esquinazi received the prestigious Rudolf-Kaiser-Award, recognizing his significant contributions to understanding the thermally activated behavior of flux line lattices in high-temperature superconductors. This award underscores his innovative research and dedication to advancing knowledge in superconductivity and materials science. His work has been influential in the scientific community, garnering respect and recognition among peers. Through his ongoing research and mentorship, he continues to inspire future generations of physicists.

Research Focus:

Prof. Esquinazi’s research primarily revolves around superconductivity, magnetism, and the properties of functional materials. He has extensively studied granular superconductivity, defect-induced magnetism, and magnetotransport phenomena in various materials, including graphite and ZnO nanostructures. His work integrates experimental and theoretical approaches to explore the underlying physical principles, leading to novel applications in quantum sensors and advanced materials. As an editor and contributor to several significant publications, he actively shapes the discourse in condensed matter physics.

Publication Titles:

  • Magnetite crystallization in a sodium-calcium-silicate glass with high iron oxide concentration–Effect on the magnetic properties
  • Feasibility of room temperature detection of low energy single ions using nanometer-thick graphite
  • Hints of granular superconductivity in natural graphite verified by trapped flux transport measurements
  • Magnetotransport Properties of Microstructured ZnO Thin Films Grown on a- and r-Plane Sapphire Substrates
  • Defect-induced magnetism in TiO2: An example of quasi 2D magnetic order with perpendicular anisotropy
  • Spin Dynamics of a Solid-State Qubit in Proximity to a Superconductor
  • High-field and high-temperature magnetoresistance reveals the superconducting behavior of the stacking faults in multilayer graphene
  • Magnetic manipulation in Dy/Tb multilayer upon electron-irradiation
  • On the Localization of Persistent Currents Due to Trapped Magnetic Flux at the Stacking Faults of Graphite at Room Temperature
  • Nanometers-Thick Ferromagnetic Surface Produced by Laser Cutting of Diamond

Conclusion:

Prof. Dr. Pablo David Esquinazi exemplifies the qualities of an outstanding researcher deserving of the Best Researcher Award. His extensive academic background, impactful research contributions, innovative spirit, and leadership in collaborative projects position him as a leader in the field of physics. By enhancing outreach and interdisciplinary efforts, he could further amplify his already significant impact on the scientific community. Recognizing his achievements with this award would not only honor his past contributions but also encourage continued excellence and innovation in his future endeavors.

Anne Blais | Obesity | Women Researcher Award

Dr.Anne Blais | Obesity | Women Researcher Award

Chercheur at UMR PNCA, AgroParisTech, INRAE, University Paris-Saclay,France

Anne Blais is a distinguished researcher and academic in nutrition and physiology, holding dual Canadian and French nationality. She is based at UMR PNCA, AgroParisTech, INRAE, and has a long-standing commitment to studying the cellular and molecular mechanisms of food behavior. With a Ph.D. from the Université de Montréal, Anne has contributed extensively to the scientific community through numerous publications and active involvement in professional societies. She balances her professional life with family, being married and a parent.

Profile:

Scopus Profile

Strengths for the Award:

Anne Blais is a distinguished researcher in the field of nutrition and food science, holding advanced degrees including a Ph.D. in Physiology. Her extensive academic background, coupled with her current role at UMR PNCA, AgroParisTech, and INRAE, underscores her commitment to advancing knowledge in the mechanisms controlling food behavior and metabolism. Blais has authored and co-authored numerous impactful publications, including studies on protein quality, nutritional interventions, and the physiological effects of amino acids. Her work is recognized internationally, evidenced by her contributions to high-impact journals such as the British Journal of Nutrition and the International Journal of Molecular Sciences. Furthermore, her involvement in student training and conference organization demonstrates her leadership in the field and commitment to fostering the next generation of researchers.

Areas for Improvement:

While Anne Blais has an impressive research portfolio, there is room for growth in collaborative interdisciplinary projects that integrate emerging technologies in nutrition and metabolism. Expanding her focus to include more innovative methodologies such as big data analytics or artificial intelligence in nutritional studies could enhance the breadth of her research impact. Additionally, increasing outreach efforts to engage with the public and industry stakeholders could further promote the relevance and application of her research findings.

Education:

Anne Blais has an extensive educational background in the life sciences. She earned her Diplôme d’Études Collégiales in Pure Sciences from Collège de Saint-Jean sur Richelieu, followed by a B.Sc. in Biology from Université de Sherbrooke, specializing in physiology and biochemistry. She completed her M.Sc. in Food Science and Technology at Université Laval and went on to earn a Ph.D. in Physiology from the Université de Montréal. Her academic training has laid a strong foundation for her research and teaching career.

Experience:

With decades of experience, Anne Blais has established herself as a leading figure in nutrition research. She has worked at UMR PNCA, AgroParisTech, focusing on the physiological aspects of nutrition. In addition to her research, she plays a vital role in training the next generation of scientists through various graduate programs. Anne has organized conferences and contributed as a referee for multiple high-impact journals, demonstrating her leadership and expertise. Her involvement in international scientific communities underscores her commitment to advancing knowledge in her field.

Research Focus:

Anne Blais’s research primarily focuses on the cellular and molecular mechanisms involved in controlling food behavior. Her studies investigate the effects of protein quality on energy and bone metabolism, utilizing both cellular and animal models. She is particularly interested in how dietary components, such as amino acids, influence physiological responses. Through her research, Anne aims to uncover insights that could lead to improved dietary recommendations and interventions for better health outcomes, especially concerning obesity and metabolic disorders.

Publication Top Notes:

  1. Minimal processed infant formula vs. conventional shows comparable protein quality and increased postprandial plasma amino acid kinetics in rats. 🍼
  2. Efficiency of Orexin-A for Inflammatory Flare and Mucosal Healing in Experimental Colitis: Comparison with the Anti-TNF Alpha Infliximab. 💊
  3. Lysine or Threonine Deficiency Decreases Body Weight Gain in Growing Rats despite an Increase in Food Intake without Increasing Energy Expenditure in Response to FGF21. 🥩
  4. Lactoferrin Supplementation during Gestation and Lactation Is Efficient for Boosting Rat Pup Development. 🐾
  5. Severe protein deficiency induces hepatic expression and systemic level of FGF21 but inhibits its hypothalamic expression in growing rats. 🧬
  6. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. 🎯
  7. Milk proteins: Nutritional quality of milk proteins. 🥛
  8. Tolerable amounts of amino acids for human supplementation: summary and lessons from published peer-reviewed studies. 📚
  9. Sulfur-containing amino acids and lipid metabolism. 💧
  10. Intestinal Availability and Metabolic Effects of Dietary Camelina Sphingolipids during the Metabolic Syndrome Onset in Mice. 🐭

Conclusion:

In conclusion, Anne Blais stands out as a leading researcher in nutrition and food science, demonstrating significant contributions through her rigorous research and commitment to education. Her expertise in the physiological aspects of nutrition, coupled with her active involvement in scientific communities, positions her as a strong candidate for the Best Researcher Award. By embracing interdisciplinary collaborations and expanding her research methodologies, she can continue to advance the field and influence public health positively.

Muhammad Bilal | Underwater Communication | Best Researcher Award

Muhammad Bilal | Underwater Communication | Best Researcher Award

Dr. Muhammad Bilal, Harbin Engineering University, China

Dr. Muhammad Bilal is an accomplished researcher in the field of Information and Communication Engineering, specializing in underwater acoustic communication. With a robust educational background and extensive research experience, he has made significant contributions to the field through innovative projects and publications. His dedication to mentoring students and fostering collaborative research enhances his reputation as a leader in academia.

Professional Profile:

Suitability for the Best Researcher Award:

Dr. Bilal’s qualifications and achievements position him as an exceptional candidate for the Best Researcher Award. His extensive publication record, with 12 SCI and 6 EI indexed articles, highlights his impactful research contributions. His work on novel communication techniques, particularly those mimicking natural sounds, showcases his innovative approach and relevance to contemporary challenges. Furthermore, his active engagement in mentoring doctoral students and organizing international conferences underscores his commitment to advancing the field and supporting future researchers.

Education 

Dr. Bilal holds a Ph.D. in Information and Communication Engineering from Harbin Engineering University, where he graduated with a commendable 91%. He is currently a post-doctoral researcher at the same institution, furthering his expertise. His academic journey also includes a Master’s in Telecommunication Engineering from Hamdard University, Pakistan, and a Bachelor’s degree from FAST National University. This solid educational foundation has equipped him with the theoretical knowledge and practical skills necessary for his research.

Work Experience

Dr. Bilal has accumulated substantial professional experience, currently serving as a post-doctoral researcher at Harbin Engineering University. His prior role as a Senior Manager (Technical) at the National Engineering and Scientific Commission in Pakistan involved leading technical projects and managing teams focused on marine research. Additionally, he has taught various courses in wireless communication and signal processing, demonstrating his ability to convey complex concepts to students at multiple academic levels.

Skills

Dr. Bilal possesses a diverse skill set that includes advanced knowledge in wireless and underwater communication, signal processing, and machine learning. His proficiency in deep neural networks and acoustic communication techniques reflects his technical expertise. Furthermore, he has strong organizational and leadership skills, evidenced by his roles in mentoring students and coordinating academic events. His collaborative spirit is enhanced by his experience working with international research teams.

Awards and Honors

Throughout his career, Dr. Bilal has received several accolades that recognize his contributions to academia and research. Notably, he was named the Best International Student of the Year at Harbin Engineering University for the academic year 2017-2018. He has also been actively involved in various committees for international conferences and workshops, reflecting his respected standing in the academic community. His recognition as a key member of significant technical program committees further demonstrates his influence and commitment to the field.

Publication top Notes:

Biologically inspired covert underwater acoustic communication—A review
Authors: G. Qiao, M. Bilal, S. Liu, Z. Babar, T. Ma
Year: 2018
Cited by: 33 📚🌊

Dolphin sounds-inspired covert underwater acoustic communication and micro-modem
Authors: G. Qiao, Y. Zhao, S. Liu, M. Bilal
Year: 2017
Cited by: 29 🐬🔊

Bionic Morse coding mimicking humpback whale song for covert underwater communication
Authors: M. Bilal, S. Liu, G. Qiao, L. Wan, Y. Tao
Year: 2019
Cited by: 28 🐋📡

A frequency hopping pattern inspired bionic underwater acoustic communication
Authors: G. Qiao, T. Ma, S. Liu, M. Bilal
Year: 2021
Cited by: 25 🌊🔄

Covert underwater communication by camouflaging sea piling sounds
Authors: S. Liu, M. Wang, T. Ma, G. Qiao, M. Bilal
Year: 2018
Cited by: 22 🌊🔍

A nonlinear distortion removal based on deep neural network for underwater acoustic OFDM communication with the mitigation of peak to average power ratio
Authors: X. Ma, W. Raza, Z. Wu, M. Bilal, Z. Zhou, A. Ali
Year: 2020
Cited by: 17 🧠⚡️

Symmetry oriented covert acoustic communication by mimicking humpback whale song
Authors: G. Qiao, M. Bilal, S. Liu, T. Ma, Y. Zhao, B. Kong
Year: 2019
Cited by: 17 🐋🔒

M-ary nonlinear sine chirp spread spectrum for underwater acoustic communication based on virtual time-reversal mirror method
Authors: S. Liu, H.H. Zuberi, Y. Lou, M.B. Farooq, S. Shaikh, W. Raza
Year: 2021
Cited by: 15 🌊🔊

Shallow water acoustic channel modeling and MIMO-OFDM simulations
Authors: G. Qiao, Z. Babar, L. Ma, L. Wan, X. Qing, X. Li, M. Bilal
Year: 2018
Cited by: 13 🌊📊

Symmetric connectivity of underwater acoustic sensor networks based on multi-modal directional transducer
Authors: G. Qiao, Q. Liu, S. Liu, B. Muhammad, M. Wen
Year: 2021
Cited by: 9 🌐🎛️

Mr. Mohammad Ali Nasiri | Thermoelectric sensor | Best Researcher Award

Mr. Mohammad Ali Nasiri | Thermoelectric sensor | Best Researcher Award

Mr. Mohammad Ali Nasiri ,university of valencia -Instituto de Ciencia Molecular (ICMOL), Spain

Mohammad Ali Nasiri, based in Valencia, Spain, is an innovative researcher specializing in thermoelectric materials, energy storage, and sustainable solutions. With over five years of experience at the Instituto de Ciencia Molecular (ICMOL), he has made significant advancements in energy storage technologies and sustainable thermoelectric materials. Nasiri has expertise in micro/nanofabrication and extensive characterization techniques, including electron beam evaporation, thermal evaporation, and Raman spectroscopy. His notable publications include works on ultrathin transparent nickel electrodes and lignin-derived ionic conducting membranes. Nasiri holds a Master of Science in Nanotechnology from the Materials and Energy Research Center, Iran, and a Master of Science in Mechanical Engineering from Tarbiat Modares University, Iran. He is currently pursuing research in Nanoscience and Nanotechnology at the University of Valencia, focusing on thermoelectric materials. Nasiri’s work has been guided by esteemed research advisors Andres Cantarero and Clara Gomez.

Professional Profile:

ORCID

Education:

  • Researcher in Nanoscience and Nanotechnology, University of Valencia (March 2019 – Present)
  • Master of Science in Nanotechnology – Nanomaterials, Materials and Energy Research Center, Tehran, Iran (September 2014 – 2017)
  • Master of Science in Mechanical Engineering, Tarbiat Modares University, Tehran, Iran (November 2006 – 2009)

Languages:

  • English (B1), Persian (Native) 🗣️📚

Research Interests:

  • Hydrogel bioelectronics
  • Thermal conductivity on flakes
  • Ionic thermometric materials 🌊🌡️

Professional Experience:

  • Researcher Assistant at Instituto de Ciencia Molecular (ICMOL) (March 2019 – Present)
    • Developed sensors for 3ω method thermal conductivity characterization.
    • Created lignin-based MWCNT/MXene multilayered electrodes for energy storage.
    • Pioneered sustainable innovations in thermoelectric materials, including lignin-derived ionic conducting membranes and hydrogels.
    • Advanced techniques in transparent thermoelectric materials, including ultrathin transparent nickel electrodes and selective light absorbers. 🌞🧪

Skills:

  • Cleanroom Class 10000: Expert in micro and nanofabrication techniques such as electron beam evaporation, thermal evaporation, sputtering, ellipsometry, dry etching, and wire bonding. 🏭🔧
  • Characterization Techniques: Proficient in thermoelectric and thermal conductivity measurements, Hall effect, Raman, FTIR, UV-Vis, XPS, Kerr electro-optic effect, and SThM. 📊🔍
  • Mathematical Modeling and Problem Solving: Specializes in ionic thermoelectric materials and metamaterials using finite element method (FEM) and perturbation method. 📐🧩

Publication top Notes:

Highly-efficient sustainable ionic thermoelectric materials using lignin-derived hydrogels

Synthesis of PEDOT/CNTs Thermoelectric Thin Films with a High Power Factor

Lignin‐Derived Ionic Conducting Membranes for Low‐Grade Thermal Energy Harvesting

Ultrathin Transparent Nickel Electrodes for Thermoelectric Applications

Textile‐based Thermoelectric Generator Produced Via Electrochemical Polymerization

Elevated temperature annealed α-Fe<inf>2</inf>O<inf>3</inf>/reduced graphene oxide nanocomposite photoanode for photoelectrochemical water oxidation