Reza Shokri | Neural Recording | Best Paper Award

Mr. Reza Shokri | Neural Recording | Best Paper Award

PhD at University of Genova, Italy

Reza Shokri, born in July 1992, is an accomplished electrical engineer specializing in integrated circuit design and biomedical applications. With a strong academic background and a passion for innovation, Reza has consistently excelled in his field, demonstrating leadership through both research and teaching roles. Currently pursuing his PhD at the University of Genova, he continues to develop cutting-edge technologies that bridge the gap between engineering and medicine. Reza’s work is characterized by its relevance to neural recording systems, showcasing his commitment to improving healthcare through engineering solutions.

Profile:

ORCID Profile

Strengths for the Award:

  1. Outstanding Academic Performance: Reza has demonstrated exceptional academic achievement, being ranked 2nd in a highly competitive PhD entrance exam in Iran, and 65th among over 30,000 participants in the MSc entrance exam. This reflects both his intellect and dedication to his field.
  2. Diverse Research Experience: His research spans critical areas such as DC-DC converters, low-power biomedical ADCs, and neural recording systems. This breadth showcases his versatility and ability to tackle complex problems in engineering.
  3. Significant Contributions to Publications: Reza has authored and co-authored several noteworthy publications, including articles in reputable journals and conference proceedings. His work on a VCO-based ADC for neural recording applications indicates a strong focus on practical and impactful research.
  4. Teaching and Mentoring: His experience as a teaching assistant at reputable institutions highlights his ability to communicate complex concepts and contribute to the education of future engineers.
  5. Relevant Work Experience: His professional roles in both academic and industrial settings, particularly in designing analog integrated circuits for biomedical applications, demonstrate practical skills and a commitment to applying research in real-world contexts.
  6. Collaborative Research Efforts: Reza has effectively collaborated with multiple researchers and professors, indicating strong teamwork skills and an ability to contribute to multidisciplinary projects.

Areas for Improvement:

  1. Language Proficiency: While Reza has an intermediate level of English, enhancing his proficiency could improve his ability to engage with a broader international audience and contribute to global research discussions.
  2. Broader Impact Assessment: Although his research is innovative, focusing more on the societal and economic impacts of his work could enhance its relevance and applicability.
  3. Networking and Conferences: Increasing participation in international conferences and workshops can provide Reza with more opportunities to present his work, receive feedback, and establish connections with other researchers.
  4. Leadership Roles: Pursuing leadership positions in research groups or committees could help him develop skills in project management and strategic planning.

Education:

Reza began his academic journey in Electrical Engineering at Tabriz University, earning his BSc with a thesis on “Implementation of Digital Pen with an Accelerometer.” He later pursued an MSc at the University of Tehran, focusing on circuit design for neural recording systems. His commitment to furthering his expertise led him to the University of Genova, where he is currently working towards a PhD. His education has equipped him with a solid foundation in both theoretical knowledge and practical skills, essential for addressing complex engineering challenges.

Experience:

Reza’s professional experience spans multiple roles in both academic and industry settings. He currently works as an Analog Integrated Circuit Designer at the University of Tehran, focusing on the design and layout of multipolar waveform stimulators for deep brain stimulation systems. Previously, he served as a Hardware Designer at Niktek Company, where he designed a high-resolution arbitrary waveform stimulator. His experience also includes significant projects on DC-DC converters and automotive control modules, showcasing his versatile engineering skills and commitment to advancing technology in biomedical applications.

Awards and Honors:

Reza has received numerous accolades for his academic and research excellence. He ranked 2nd out of over 1500 participants in the Electrical Engineering PhD Entrance Exam in Iran and achieved 65th among more than 30,000 in the MSc Entrance Exam. These accomplishments reflect his dedication and proficiency in electrical engineering. Reza’s commitment to advancing knowledge in his field has not only earned him recognition but also inspires his peers and future engineers to strive for excellence.

Research Focus:

Reza’s research focuses on the intersection of electrical engineering and biomedical applications, particularly in neural recording and stimulation systems. His work includes the design of low-power, high-performance analog-to-digital converters and DC-DC converters tailored for biomedical applications. He is also exploring quantum phase estimation algorithms, reflecting his innovative approach to addressing modern engineering challenges. Reza’s research aims to enhance medical technologies and improve patient outcomes, contributing significantly to the field of biomedical engineering.

Publication Top Notes:

  • A Reconfigurable, Nonlinear, Low-Power, VCO-Based ADC for Neural Recording Applications
  • Highly Linear, Digital OTA With Modified Input Stage
  • Multipolar Stimulator for DBS Application with Concurrent Imbalance Compensation
  • A Nonlinear, Low-Power, VCO-Based ADC for Neural Recording Applications
  • A Buck Converter Based on Dual Mode Asynchronous Pulse Width Modulator

Conclusion:

Reza Shokri possesses the qualifications, research experience, and academic achievements that make him a strong candidate for the Best Researcher Award. His dedication to advancing knowledge in electrical engineering, particularly in biomedical applications, is commendable. By addressing areas for improvement, such as enhancing language skills and increasing networking opportunities, Reza can further amplify his contributions to the field and increase his impact as a researcher. His potential for future innovation and leadership in electrical engineering positions him as a valuable asset to the academic and scientific community.

Amirreza Mehrabi | Engineering Education | Best Researcher Award

Mr. Amirreza Mehrabi | Engineering Education | Best Researcher Award

Researcher at Purdue, United States

Amirreza Mehrabi is a dedicated Ph.D. candidate in Engineering Education at Purdue University, specializing in cognitive fatigue modeling during examinations. With a strong interdisciplinary background in engineering and education, he combines advanced statistical methods and machine learning to optimize assessment strategies. A passionate advocate for innovative educational practices, Amirreza actively engages in research that enhances student learning experiences. His leadership roles include heading the ASEE student chapter at Purdue and contributing to the Purdue Graduate Student Government. Amirreza’s commitment to excellence is reflected in his numerous publications and contributions to engineering education.

Profile:

Strengths for the Award:

  1. Academic Excellence:
    • Amirreza’s impressive GPA of 3.94 in his Ph.D. program demonstrates a strong academic foundation and commitment to excellence in his field.
  2. Diverse Research Contributions:
    • His research encompasses various innovative topics such as cognitive fatigue modeling, computer adaptive testing, and the impacts of COVID-19 on education. This breadth indicates versatility and relevance in current educational challenges.
  3. Publication Record:
    • Amirreza has authored multiple papers and book chapters, including works in notable journals and conference proceedings, showcasing his ability to contribute significantly to academic discourse.
  4. Leadership and Engagement:
    • Serving as the head of the ASEE student chapter and a PR team member reflects strong leadership skills and a commitment to fostering community within the academic environment.
  5. Recognition and Awards:
    • His receipt of prestigious awards, including the GOLD medal at the Industrial Engineering Olympiad, highlights his exceptional capabilities and recognition among peers.
  6. Collaborative Projects:
    • Participation in significant research projects, such as the NSF-funded CD_CAT project, underscores his collaborative spirit and ability to work on impactful initiatives.
  7. Teaching and Mentoring Experience:
    • His roles as a teaching assistant and mentor indicate his dedication to education and the development of future engineers.

Areas for Improvement:

  1. Broader Impact of Research:
    • While Amirreza’s work is innovative, articulating the broader implications of his research for industry and educational policy could enhance its impact and visibility.
  2. Networking and Collaboration:
    • Increasing engagement with interdisciplinary teams or broader academic networks may lead to richer collaborations and new research perspectives.
  3. Public Outreach:
    • More initiatives focused on translating research findings into practice or engaging with the community could amplify his research’s societal impact.
  4. Presentation Skills:
    • Continuing to refine presentation skills at conferences will ensure his research is communicated effectively and reaches diverse audiences.

Education:

Amirreza Mehrabi is pursuing a Ph.D. in Engineering Education at Purdue University, with an expected graduation in 2027. He holds a Master’s degree in Electronic and Computer Engineering from Purdue and another in Engineering Education from the University of Tehran, where he graduated with a perfect GPA. His undergraduate degree in Industrial Engineering was obtained from Sharif University of Technology, where he developed a strong foundation in engineering principles. His academic journey is marked by rigorous research and a focus on the application of advanced statistical methodologies to improve educational outcomes.

Experience:

Amirreza has substantial research experience, currently working on the CD_CAT project at Purdue University, where he assists in implementing computer adaptive testing. His work involves designing models to assess cognitive fatigue and applying machine learning techniques to optimize educational assessments. Previously, he served as a data analyst for the Erasmus Plus Project, collaborating with several Iranian universities. Additionally, Amirreza has volunteered on various research initiatives focused on online learning preferences and educational innovation. His teaching experience includes mentoring first-year PhD students and serving as a teaching assistant for multiple engineering courses.

Awards and Honors:

Amirreza’s accomplishments include receiving the prestigious GOLD medal in the Industrial Engineering Olympiad in Iran, a testament to his academic excellence. He has also been recognized as the first-ranked student in Engineering Education in Iran by UNESCO. At Purdue, he leads the ASEE student chapter and has earned a $1,000 travel grant for conference participation. His dedication to engineering education and research has garnered him recognition in various forms, including the ENERGY GLOBE National Award for innovative supply chain management in agriculture.

Research Focus:

Amirreza’s research primarily explores cognitive fatigue in engineering education, utilizing methods such as pupil dilation and MRI analyses. He investigates how cognitive fatigue affects student performance during assessments, aiming to develop adaptive testing strategies that enhance learning outcomes. His work includes the application of machine learning techniques to create dynamic assessment tools that respond to students’ cognitive states. By focusing on innovative educational practices, Amirreza aims to contribute significantly to the field of engineering education and improve the overall learning experience for students.

Publications Top Notes:

  • Investigating and predicting the Cognitive Fatigue Threshold as a Factor of Performance Reduction in Assessment.
  • AI Skills-based Assessment Tool for Identifying Partial and Full-Mastery within Large Engineering Classrooms.
  • AI-Based Concept Inventories: Using Cognitive Diagnostic Computer Adaptive Testing in LASSO for Classroom Assessment.
  • AI-Enhanced Decision-Making for Course Modality Preferences in Higher Engineering Education during the Post-COVID-19 Era.
  • Optimizing Maximum Likelihood Estimation in Performance Factor Analysis: A Comparative Study of Estimation Methods.
  • A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production.

Conclusion:

Amirreza Mehrabi is an exemplary candidate for the Research for Best Researcher Award, demonstrating exceptional academic performance, a diverse range of impactful research, and strong leadership qualities. His contributions to engineering education and commitment to innovation position him as a valuable asset to the academic community. With slight improvements in outreach and collaboration, Amirreza can further enhance the impact of his research. Awarding him this recognition would not only honor his achievements but also encourage continued excellence and innovation in engineering education.

Pablo David Esquinazi | Superconductivity | Best Researcher Award

Prof Dr. Pablo David Esquinazi | Superconductivity | Best Researcher Award

Prof. Emeritus at University of Leipzig, Germany

Prof. Dr. Pablo David Esquinazi, born on May 25, 1956, is a distinguished physicist and Professor Emeritus at Universität Leipzig. With a career spanning over four decades, he is renowned for his contributions to condensed matter physics, particularly in superconductivity and magnetism. He has published extensively and holds multiple patents, reflecting his innovative spirit. A dedicated mentor, he has also played a pivotal role in shaping future scientists through various academic programs and collaborations. As a passionate researcher, he remains engaged in advancing scientific knowledge and applications.

Profile:

Strengths for the Award:

  1. Extensive Academic Background: Prof. Esquinazi has a solid educational foundation in physics, with degrees from prestigious institutions, including the Instituto Balseiro and Universität Bayreuth. His extensive academic experience, culminating in a Habilitation, underscores his deep expertise in the field.
  2. Professional Contributions: With nearly three decades as a professor and division speaker at Universität Leipzig, he has made significant contributions to the field of condensed matter physics, specifically in superconductivity and magnetism.
  3. Research Impact: His work has led to substantial advancements in understanding phenomena like granular superconductivity and defect-induced magnetism. His numerous publications in high-impact journals reflect a strong research output, with several articles receiving citations, indicating the influence of his work on the scientific community.
  4. Innovation and Patents: Prof. Esquinazi holds multiple patents in advanced materials and quantum sensors, demonstrating his commitment to translating research into practical applications. This innovation reflects his ability to push the boundaries of current scientific knowledge.
  5. Leadership in Collaborative Research: He has been actively involved in collaborative research projects, such as the SFB 762 and DFG FOR 404, showcasing his ability to work effectively within interdisciplinary teams and lead significant research initiatives.
  6. Recognition and Awards: The Rudolf-Kaiser-Award highlights his noteworthy contributions to the field, affirming his status as a leading researcher in physics.
  7. Mentorship and Education: His role as a member of the Graduate School BuildMona indicates his dedication to mentoring the next generation of physicists, enhancing the academic community and contributing to knowledge dissemination.

Areas for Improvement:

  1. Broader Outreach: While Prof. Esquinazi has contributed significantly to academic journals, expanding outreach through public engagement or interdisciplinary collaboration could further enhance his visibility and impact.
  2. Interdisciplinary Projects: Increasing participation in interdisciplinary research could lead to innovative breakthroughs by applying his expertise in new contexts, particularly in emerging fields like quantum computing or nanotechnology.
  3. Increased Publications in Open Access: Although many of his works are open access, increasing the number of freely available publications could broaden access to his research, fostering greater collaboration and recognition.
  4. Funding and Grants: Seeking larger or more diverse funding opportunities could enable more extensive research projects and support additional students or postdocs.

Education:

Prof. Esquinazi completed his studies in physics at the University of Tucuman and Instituto Balseiro in Argentina, earning his diploma in 1979. He furthered his education with a Doctorate from Instituto Balseiro in 1983, followed by a Habilitation at Universität Bayreuth in 1991. His academic journey was marked by mentorship from prominent physicists, shaping his expertise in low-temperature physics and materials science. This robust educational foundation has enabled him to contribute significantly to his field, fostering a deep understanding of complex physical phenomena.

Experience:

With professional experience beginning in 1980, Prof. Esquinazi served as a research associate and postdoc at renowned institutions, including CAB-Bariloche and Universität Heidelberg. He was a professor at Universität Bayreuth from 1988 to 1994 before joining Universität Leipzig, where he led the Felix-Bloch Institute until his retirement in 2022. His leadership in collaborative research initiatives, including the SFB 762, highlights his ability to drive impactful projects in the field. Throughout his career, he has also been an invited professor at several international universities, promoting global scientific collaboration.

Awards and Honors:

In 1993, Prof. Esquinazi received the prestigious Rudolf-Kaiser-Award, recognizing his significant contributions to understanding the thermally activated behavior of flux line lattices in high-temperature superconductors. This award underscores his innovative research and dedication to advancing knowledge in superconductivity and materials science. His work has been influential in the scientific community, garnering respect and recognition among peers. Through his ongoing research and mentorship, he continues to inspire future generations of physicists.

Research Focus:

Prof. Esquinazi’s research primarily revolves around superconductivity, magnetism, and the properties of functional materials. He has extensively studied granular superconductivity, defect-induced magnetism, and magnetotransport phenomena in various materials, including graphite and ZnO nanostructures. His work integrates experimental and theoretical approaches to explore the underlying physical principles, leading to novel applications in quantum sensors and advanced materials. As an editor and contributor to several significant publications, he actively shapes the discourse in condensed matter physics.

Publication Titles:

  • Magnetite crystallization in a sodium-calcium-silicate glass with high iron oxide concentration–Effect on the magnetic properties
  • Feasibility of room temperature detection of low energy single ions using nanometer-thick graphite
  • Hints of granular superconductivity in natural graphite verified by trapped flux transport measurements
  • Magnetotransport Properties of Microstructured ZnO Thin Films Grown on a- and r-Plane Sapphire Substrates
  • Defect-induced magnetism in TiO2: An example of quasi 2D magnetic order with perpendicular anisotropy
  • Spin Dynamics of a Solid-State Qubit in Proximity to a Superconductor
  • High-field and high-temperature magnetoresistance reveals the superconducting behavior of the stacking faults in multilayer graphene
  • Magnetic manipulation in Dy/Tb multilayer upon electron-irradiation
  • On the Localization of Persistent Currents Due to Trapped Magnetic Flux at the Stacking Faults of Graphite at Room Temperature
  • Nanometers-Thick Ferromagnetic Surface Produced by Laser Cutting of Diamond

Conclusion:

Prof. Dr. Pablo David Esquinazi exemplifies the qualities of an outstanding researcher deserving of the Best Researcher Award. His extensive academic background, impactful research contributions, innovative spirit, and leadership in collaborative projects position him as a leader in the field of physics. By enhancing outreach and interdisciplinary efforts, he could further amplify his already significant impact on the scientific community. Recognizing his achievements with this award would not only honor his past contributions but also encourage continued excellence and innovation in his future endeavors.

Anne Blais | Obesity | Women Researcher Award

Dr.Anne Blais | Obesity | Women Researcher Award

Chercheur at UMR PNCA, AgroParisTech, INRAE, University Paris-Saclay,France

Anne Blais is a distinguished researcher and academic in nutrition and physiology, holding dual Canadian and French nationality. She is based at UMR PNCA, AgroParisTech, INRAE, and has a long-standing commitment to studying the cellular and molecular mechanisms of food behavior. With a Ph.D. from the Université de Montréal, Anne has contributed extensively to the scientific community through numerous publications and active involvement in professional societies. She balances her professional life with family, being married and a parent.

Profile:

Scopus Profile

Strengths for the Award:

Anne Blais is a distinguished researcher in the field of nutrition and food science, holding advanced degrees including a Ph.D. in Physiology. Her extensive academic background, coupled with her current role at UMR PNCA, AgroParisTech, and INRAE, underscores her commitment to advancing knowledge in the mechanisms controlling food behavior and metabolism. Blais has authored and co-authored numerous impactful publications, including studies on protein quality, nutritional interventions, and the physiological effects of amino acids. Her work is recognized internationally, evidenced by her contributions to high-impact journals such as the British Journal of Nutrition and the International Journal of Molecular Sciences. Furthermore, her involvement in student training and conference organization demonstrates her leadership in the field and commitment to fostering the next generation of researchers.

Areas for Improvement:

While Anne Blais has an impressive research portfolio, there is room for growth in collaborative interdisciplinary projects that integrate emerging technologies in nutrition and metabolism. Expanding her focus to include more innovative methodologies such as big data analytics or artificial intelligence in nutritional studies could enhance the breadth of her research impact. Additionally, increasing outreach efforts to engage with the public and industry stakeholders could further promote the relevance and application of her research findings.

Education:

Anne Blais has an extensive educational background in the life sciences. She earned her Diplôme d’Études Collégiales in Pure Sciences from Collège de Saint-Jean sur Richelieu, followed by a B.Sc. in Biology from Université de Sherbrooke, specializing in physiology and biochemistry. She completed her M.Sc. in Food Science and Technology at Université Laval and went on to earn a Ph.D. in Physiology from the Université de Montréal. Her academic training has laid a strong foundation for her research and teaching career.

Experience:

With decades of experience, Anne Blais has established herself as a leading figure in nutrition research. She has worked at UMR PNCA, AgroParisTech, focusing on the physiological aspects of nutrition. In addition to her research, she plays a vital role in training the next generation of scientists through various graduate programs. Anne has organized conferences and contributed as a referee for multiple high-impact journals, demonstrating her leadership and expertise. Her involvement in international scientific communities underscores her commitment to advancing knowledge in her field.

Research Focus:

Anne Blais’s research primarily focuses on the cellular and molecular mechanisms involved in controlling food behavior. Her studies investigate the effects of protein quality on energy and bone metabolism, utilizing both cellular and animal models. She is particularly interested in how dietary components, such as amino acids, influence physiological responses. Through her research, Anne aims to uncover insights that could lead to improved dietary recommendations and interventions for better health outcomes, especially concerning obesity and metabolic disorders.

Publication Top Notes:

  1. Minimal processed infant formula vs. conventional shows comparable protein quality and increased postprandial plasma amino acid kinetics in rats. 🍼
  2. Efficiency of Orexin-A for Inflammatory Flare and Mucosal Healing in Experimental Colitis: Comparison with the Anti-TNF Alpha Infliximab. 💊
  3. Lysine or Threonine Deficiency Decreases Body Weight Gain in Growing Rats despite an Increase in Food Intake without Increasing Energy Expenditure in Response to FGF21. 🥩
  4. Lactoferrin Supplementation during Gestation and Lactation Is Efficient for Boosting Rat Pup Development. 🐾
  5. Severe protein deficiency induces hepatic expression and systemic level of FGF21 but inhibits its hypothalamic expression in growing rats. 🧬
  6. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. 🎯
  7. Milk proteins: Nutritional quality of milk proteins. 🥛
  8. Tolerable amounts of amino acids for human supplementation: summary and lessons from published peer-reviewed studies. 📚
  9. Sulfur-containing amino acids and lipid metabolism. 💧
  10. Intestinal Availability and Metabolic Effects of Dietary Camelina Sphingolipids during the Metabolic Syndrome Onset in Mice. 🐭

Conclusion:

In conclusion, Anne Blais stands out as a leading researcher in nutrition and food science, demonstrating significant contributions through her rigorous research and commitment to education. Her expertise in the physiological aspects of nutrition, coupled with her active involvement in scientific communities, positions her as a strong candidate for the Best Researcher Award. By embracing interdisciplinary collaborations and expanding her research methodologies, she can continue to advance the field and influence public health positively.

Prof Dr. Camelia Cerbu | Computational Analysis Award | Best Researcher Award

Prof Dr. Camelia Cerbu | Computational Analysis Award | Best Researcher Award 

Prof Dr. Camelia Cerbu, Transilvania University of Brasov, Romania

Camelia Cerbu is a distinguished professor at Transilvania University of Brașov, Romania, specializing in Mechanical Engineering. With a robust academic background, she earned her Ph.D. in Engineering Sciences in 2005, focusing on the structural optimization of composite materials under challenging environmental conditions. Over her career, she has advanced through various academic ranks, from University Assistant to Professor, while also serving as a PhD supervisor in Mechanical Engineering. Her research expertise encompasses the strength of materials, mechanics of composite materials, and the analysis of stress and strain fields in mechanical structures. In addition to her academic pursuits, Dr. Cerbu has contributed to industry through her engineering roles in research and design for manufacturing technologies. Her commitment to education is reflected in her involvement in developing modern educational technologies and mentoring numerous graduate and doctoral students.

Professional Profile:

Summary of Suitability for the Best Researcher Award: Camelia Cerbu

Overview: Camelia Cerbu is a highly qualified candidate for the Best Researcher Award, demonstrating extensive experience and significant contributions in the field of Mechanical Engineering, particularly in materials science and composite materials. Her academic credentials, professional experience, and impactful research align with the criteria for this prestigious award.

🏫 Education:

  • PhD in Engineering Sciences (Mechanical Engineering)
    Transilvania University of Brașov, 2005
    Thesis: Research on structural optimization of composite materials under aggressive environmental conditions.
  • Master’s in Computer Assisted Technological Engineering
    Transilvania University of Brașov, 1997
  • Engineer in Mechanics (Machine Building Technology, CAD)
    Transilvania University of Brașov, 1996

💼 Work Experience:

  • Professor (2016 – Present)
    Transilvania University of Brașov

    • Teaching courses in Strength of Materials, Mechanics of Composite Materials, and Dynamics of Mechanical Structures.
    • Supervising PhD theses and research activities.
  • Associate Professor (2007 – 2016)
    Transilvania University of Brașov
  • University Lecturer (2002 – 2007)
    Transilvania University of Brașov
  • University Assistant (2000 – 2002)
    Transilvania University of Brașov
  • Engineer (1997 – 2000)
    S.C. I.U.S. S.A. Brașov

    • Designed manufacturing technology for hand tools.
  • Engineer (1996 – 1997)
    Automotive Institute of Brașov

    • Worked on Computer Aided Design for inspection tools.

🔍 Research Expertise:

Camelia’s research interests include:

  • Strength of materials and mechanics of isotropic and anisotropic materials.
  • Finite element analysis and stress-strain field analysis in mechanical structures.
  • Experimental determination of mechanical properties of materials.
  • Investigating environmental impacts on composite materials.

🏆 Professional Development:

  • PhD Supervisor at the Doctoral School of Transilvania University of Brașov (2015 – Present)
  • Habilitation in Mechanical Engineering (2015)

💡 Skills and Competencies:

Camelia is adept in:

  • Strength and mechanics of materials
  • Finite Element Method (FEM)
  • Computer Aided Design (CAD)
  • Research supervision and scientific coordination

Publication top Notes:

Effects of Rubber Core on the Mechanical Behaviour of the Carbon–Aramid Composite Materials Subjected to Low-Velocity Impact Loading Considering Water Absorption

Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review

Investigation on Phoenix dactylifera/Calotropis procera Fibre-Reinforced Epoxy Hybrid Composites

Evaluation of Wave Velocity in Orthotropic Media Based on Intrinsic Transfer Matrix

Design Solutions for Slender Bars with Variable Cross-Sections to Increase the Critical Buckling Force

Effect of the Looseness of the Beam End Connection Used for the Pallet Racking Storage Systems, on the Mechanical Behavior of the Bearing Beams